Skip to main content
Glama

Taskmaster MCP Server

A Simplified Model Context Protocol Server for Task Management

Smithery Compatible Python 3.11+ MCP Protocol Works with Any LLM

Taskmaster is a simplified MCP server that provides AI agents with straightforward task management. It works with any LLM - no complex thinking required!

๐ŸŒŸ Key Features

Simple 4-Step Workflow

  • create_session: Start a new task session

  • create_tasklist: Define your tasks

  • execute_next: Get next task to work on

  • mark_complete: Complete current task

  • end_session: Finish when all tasks done

Works with Any LLM

  • No Complex Thinking: No six-hat thinking or capability mapping required

  • Auto-Assigned Tools: Standard tools (read_file, edit_file, run_terminal_cmd, codebase_search) auto-assigned

  • Simple Guidance: Clear, concise instructions that any LLM can follow

  • State Management: Full session persistence and task tracking

Streamlined Design

  • Minimal Commands: Only 4 essential commands needed

  • Clear Progression: Linear workflow that's easy to follow

  • Persistent State: Session and task state maintained throughout

  • Error Handling: Simple error messages and recovery guidance

๐Ÿš€ Quick Start

Installation

git clone <repository-url> cd taskmaster pip install -r requirements.txt

Running the Server

python server.py

The server starts on http://localhost:8080/mcp by default.

MCP Client Configuration

Cursor IDE

Add to your mcp.json configuration:

{ "servers": { "taskmaster": { "url": "http://localhost:8080/mcp", "transport": "http" } } }

Claude Desktop

Add to your claude_desktop_config.json:

{ "mcpServers": { "taskmaster": { "url": "http://localhost:8080/mcp", "transport": "http" } } }

๐Ÿ“‹ Simple Workflow Guide

1. Create Session

# Start a new task session taskmaster( action="create_session", session_name="My Development Project", task_description="Build a web application with authentication" )

2. Create Task List

# Define your tasks taskmaster( action="create_tasklist", tasklist=[ {"description": "Set up project structure"}, {"description": "Implement authentication"}, {"description": "Create user interface"} ] )

3. Execute Tasks

# Get next task to work on taskmaster(action="execute_next") # Complete current task and move to next taskmaster(action="mark_complete") # Repeat until all tasks done

4. End Session

# Finish when all tasks complete taskmaster(action="end_session")

๐Ÿ› ๏ธ Available Actions

Core Workflow Actions

Action

Purpose

Key Parameters

create_session

Start new task session

session_name

,

task_description

create_tasklist

Define your tasks

tasklist

execute_next

Get next task to work on

-

mark_complete

Complete current task

-

end_session

Finish when all tasks done

-

Utility Actions

Action

Purpose

Key Parameters

get_status

Check current workflow state

-

collaboration_request

Request human input/guidance

collaboration_context

edit_task

Modify existing task

task_id

,

updated_task_data

๐Ÿ”ง Architecture & Design

Core Components

  • TaskmasterCommandHandler: Routes and processes all taskmaster actions

  • SessionManager: Manages workflow sessions with persistent state

  • WorkflowStateMachine: Simple state management for task execution

  • AsyncSessionPersistence: High-performance file-based state persistence

  • Command Handlers: Simple handlers for each action type

Design Principles

  • Simplicity First: Easy to understand and use with any LLM

  • State Management: Full session and task persistence

  • Linear Workflow: Clear progression through tasks

  • Minimal Complexity: No complex thinking or mapping required

  • Extensible: Easy to add new features if needed

Data Flow

  1. MCP Client connects via HTTP transport

  2. Commands routed through TaskmasterCommandHandler

  3. Simple command handlers process actions

  4. Session state persisted automatically

  5. Clear guidance for next steps

โš™๏ธ Configuration

Customize server behavior by editing config.yaml:

state_directory: 'taskmaster/state' session_backup_count: 5

๐Ÿš€ Production Deployment

Smithery.ai Deployment

The server is optimized for deployment on Smithery.ai:

  1. Repository Setup: Ensure all files are committed to GitHub

  2. Smithery Configuration: smithery.yaml is pre-configured for container deployment

  3. Automated Deployment: GitHub Actions workflow handles testing and container building

Docker Deployment

docker build -t taskmaster-mcp . docker run -p 8080:8080 taskmaster-mcp

Environment Variables

  • PORT: Server port (default: 8080)

  • SMITHERY_DEPLOY: Set to "true" for Smithery deployment mode

๐Ÿงช Testing

Running Tests

# Run all tests pytest tests/ -v # Run with coverage pytest tests/ --cov=taskmaster --cov-report=html

Test Coverage

The server maintains comprehensive test coverage across:

  • Core workflow functionality

  • Command handlers and routing

  • Session management and persistence

  • Error handling scenarios

๐Ÿค Contributing

  1. Fork the repository

  2. Create a feature branch

  3. Add tests for new functionality

  4. Ensure all tests pass

  5. Submit a pull request

For detailed development information, see the Developer Guide in the docs/ directory.

๐Ÿ“œ License

MIT License - see LICENSE file for details.


Taskmaster MCP Server - Intelligent task management for AI agents with production-grade reliability, structured planning methodology, and advanced workflow orchestration.

-
security - not tested
F
license - not found
-
quality - not tested

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/TanukiMCP/taskmaster'

If you have feedback or need assistance with the MCP directory API, please join our Discord server