Skip to main content
Glama

DevFlow MCP

by Takin-Profit
embedding-service.ts1.89 kB
import type { EmbeddingModelInfo, EmbeddingProviderInfo } from "#types" /** * Interface for text embedding services */ export type IEmbeddingService = { /** * Generate embedding vector for text * * @param text - Text to embed * @returns Embedding vector */ generateEmbedding(text: string): Promise<number[]> /** * Generate embeddings for multiple texts * * @param texts - Array of texts to embed * @returns Array of embedding vectors */ generateEmbeddings(texts: string[]): Promise<number[][]> /** * Get information about the embedding model * * @returns Model information */ getModelInfo(): EmbeddingModelInfo /** * Get information about the embedding provider * * @returns Provider information */ getProviderInfo(): EmbeddingProviderInfo } /** * Abstract class for embedding services */ export class EmbeddingService implements IEmbeddingService { /** * Generate embedding vector for text * * @param text - Text to embed * @returns Embedding vector */ generateEmbedding(_text: string): Promise<number[]> { throw new Error("Method not implemented") } /** * Generate embeddings for multiple texts * * @param texts - Array of texts to embed * @returns Array of embedding vectors */ generateEmbeddings(_texts: string[]): Promise<number[][]> { throw new Error("Method not implemented") } /** * Get information about the embedding model * * @returns Model information */ getModelInfo(): EmbeddingModelInfo { throw new Error("Method not implemented") } /** * Get information about the embedding provider * * @returns Provider information */ getProviderInfo(): EmbeddingProviderInfo { return { provider: "default", model: this.getModelInfo().name, dimensions: this.getModelInfo().dimensions, } } }

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Takin-Profit/devflow-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server