Skip to main content
Glama

MCP-MinerU

PyPI version Python 3.10+ License

MCP server for document and image parsing via MinerU. Extract text, tables, and formulas from PDFs, screenshots, and scanned documents with MLX acceleration on Apple Silicon.

Installation

claude mcp add --transport stdio --scope user mineru -- \ uvx --from mcp-mineru python -m mcp_mineru.server

This command installs and configures the server for all your Claude Code projects using uvx (no manual installation required).

Alternative methods: See Installation Guide for PyPI, source installation, and Claude Desktop configuration.

Features

  • Multiple format support: PDF, JPEG, PNG, and other image formats

  • OCR capabilities: Built-in text extraction from screenshots and photos

  • Table recognition: Preserves structure when extracting tables

  • Formula extraction: Converts mathematical equations to LaTeX

  • MLX acceleration: Optimized for Apple Silicon (M1/M2/M3/M4)

  • Multiple backends: Choose speed vs quality tradeoffs

Quick Start

Parse a PDF document

User: "Analyze the tables in research_paper.pdf" Claude: [Calls parse_pdf tool] "The paper contains 3 tables..."

Extract text from a screenshot

User: "What does this screenshot say? image.png" Claude: [Calls parse_pdf tool] "The screenshot contains..."

Check system capabilities

User: "Which backend should I use?" Claude: [Calls list_backends tool] "Your system has Apple Silicon M4..."

For more examples, see Usage Examples.

Tools

parse_pdf

Parse PDF and image files to extract structured content as Markdown.

Parameters:

  • file_path (required): Absolute path to file (PDF, JPEG, PNG, etc.)

  • backend (optional): pipeline | vlm-mlx-engine | vlm-transformers

  • formula_enable (optional): Enable formula recognition (default: true)

  • table_enable (optional): Enable table recognition (default: true)

  • start_page (optional): Starting page for PDFs (default: 0)

  • end_page (optional): Ending page for PDFs (default: -1)

list_backends

Check system capabilities and get backend recommendations.

Returns: System information, available backends, and performance recommendations.

Supported Formats

  • PDF documents (.pdf)

  • JPEG images (.jpg, .jpeg)

  • PNG images (.png)

  • Other image formats (WebP, GIF, etc.)

Performance

Benchmarked on Apple Silicon M4 (16GB RAM):

  • pipeline: ~32s/page, CPU-only, good quality

  • vlm-mlx-engine: ~38s/page, Apple Silicon optimized, excellent quality

  • vlm-transformers: ~148s/page, highest quality, slowest

Documentation

Development

git clone https://github.com/TINKPA/mcp-mineru.git cd mcp-mineru uv pip install -e ".[dev]" # Run tests pytest # Format code black src/ ruff check src/

License

Apache License 2.0 - see LICENSE file for details.

Acknowledgments

Built on top of MinerU by OpenDataLab.

-
security - not tested
F
license - not found
-
quality - not tested

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/TINKPA/mcp-mineru'

If you have feedback or need assistance with the MCP directory API, please join our Discord server