Skip to main content
Glama
T1nker-1220

Knowledge Graph Memory Server

create_entities

Add multiple new entities to a knowledge graph by specifying names, types, and associated observations for persistent memory storage.

Instructions

Create multiple new entities in the knowledge graph

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
entitiesYes

Implementation Reference

  • Core handler function in KnowledgeGraphManager that creates new entities: loads graph, filters duplicates by name, appends new entities, saves graph, returns created entities.
    async createEntities(entities: Entity[]): Promise<Entity[]> { const graph = await this.loadGraph(); const newEntities = entities.filter(e => !graph.entities.some(existingEntity => existingEntity.name === e.name)); graph.entities.push(...newEntities); await this.saveGraph(graph); return newEntities;
  • Input schema definition for the create_entities tool, specifying structure for array of entities with required fields: name, entityType, observations.
    inputSchema: { type: "object", properties: { entities: { type: "array", items: { type: "object", properties: { name: { type: "string", description: "The name of the entity" }, entityType: { type: "string", description: "The type of the entity" }, observations: { type: "array", items: { type: "string" }, description: "An array of observation contents associated with the entity" }, }, required: ["name", "entityType", "observations"], }, }, }, required: ["entities"], },
  • TypeScript interface defining the Entity structure used by create_entities.
    interface Entity { name: string; entityType: string; observations: string[]; metadata?: Metadata; // Making metadata optional for backward compatibility }
  • index.ts:926-951 (registration)
    Tool registration in the ListTools response, defining name, description, and input schema.
    { name: "create_entities", description: "Create multiple new entities in the knowledge graph", inputSchema: { type: "object", properties: { entities: { type: "array", items: { type: "object", properties: { name: { type: "string", description: "The name of the entity" }, entityType: { type: "string", description: "The type of the entity" }, observations: { type: "array", items: { type: "string" }, description: "An array of observation contents associated with the entity" }, }, required: ["name", "entityType", "observations"], }, }, }, required: ["entities"], }, },
  • Dispatcher case in CallToolRequestSchema handler that invokes the createEntities method and formats JSON response.
    case "create_entities": return { content: [{ type: "text", text: JSON.stringify(await knowledgeGraphManager.createEntities(args.entities as Entity[]), null, 2) }] };

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/T1nker-1220/memories-with-lessons-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server