Skip to main content
Glama
README.md4.13 kB
# Lizeur - PDF Content Extraction MCP Server Lizeur is a Model Context Protocol (MCP) server that enables AI assistants to extract and read content from PDF documents using Mistral AI's OCR capabilities. It provides a simple interface for converting PDF files to markdown text that can be easily consumed by AI models. <a href="https://glama.ai/mcp/servers/@SilverBzH/lizeur"> <img width="380" height="200" src="https://glama.ai/mcp/servers/@SilverBzH/lizeur/badge" alt="Lizeur MCP server" /> </a> ## Features - **PDF OCR Processing**: Uses Mistral AI's latest OCR model to extract text from PDF documents - **Intelligent Caching**: Automatically caches processed documents to avoid re-processing - **Markdown Output**: Returns clean markdown text for easy integration with AI workflows - **FastMCP Integration**: Built with FastMCP for optimal performance and ease of use ## Prerequisites - Python 3.10 - UV package manager - Mistral AI API key ## Installation ### From pypi ``` pip install lizeur ``` And add the following configuration to your `mcp.json` file: **Note:** Lizeur will be installed in the python3.10 folder. If this folder is not in your system PATH, your IDE may not be able to detect the lizeur binary. **Solution:** You can add the full path to the lizeur binary in the command field to ensure your IDE can locate it. ```json { "mcpServers": { "lizeur": { "command": "lizeur", "env": { "MISTRAL_API_KEY": "your-mistral-api-key-here", "CACHE_PATH": "your cache path", } } } } ``` ### Manual #### 1. Clone the Repository ```bash git clone https://github.com/SilverBzH/lizeur cd lizeur ``` #### 2. Create and Activate Virtual Environment ```bash # Create a virtual environment uv venv --python 3.10 # Activate the virtual environment # On macOS/Linux: source .venv/bin/activate # On Windows: # .venv\Scripts\activate ``` #### 3. Install Dependencies and Build ```bash # Install dependencies uv sync # Build the package uv build ``` #### 4. Install System-Wide ```bash # Install the package system-wide uv pip install --system . ``` This will install the `lizeur` command globally on your system. ## Usage Once configured, the MCP server provides two tools that can be used by AI assistants: ### Available Functions #### `read_pdf` - **Function**: `read_pdf` - **Parameter**: `absolute_path` (string) - The absolute path to the PDF file - **Returns**: Complete OCR response including all pages with markdown content, bounding boxes, and other OCR metadata #### `read_pdf_text` - **Function**: `read_pdf_text` - **Parameter**: `absolute_path` (string) - The absolute path to the PDF file - **Returns**: Markdown text content from all pages without the full OCR metadata (simpler for agents to process) ### Example Usage in AI Assistant The AI assistant can now use the tools like this: ``` What the OP command looks like for this specific controller, here is the doc /path/to/document.pdf ``` The MCP server will: 1. Check if the document is already cached 2. If not cached, upload the PDF to Mistral AI for OCR processing **This will use your MISTRAL API key and cost money** 3. Extract the text and convert it to markdown 4. Cache the result for future use 5. Return the markdown content **Note**: Use `read_pdf_text` when you only need the text content, or `read_pdf` when you need the complete OCR response with metadata. `read_pdf` can be confusion for some agent if the pdf file is big. ## Development ### Local Development Setup ```bash # Install in development mode uv pip install -e . # Run the server directly python main.py ``` ### Project Structure - `main.py` - Main server implementation with FastMCP integration - `pyproject.toml` - Project configuration and dependencies - `uv.lock` - Locked dependency versions ## Dependencies - `mcp[cli]>=1.12.4` - Model Context Protocol implementation - `mistralai>=0.0.10` - Mistral AI Python client ## License This project is licensed under the MIT License. ## Support For issues and questions, please refer to the project repository or contact the maintainers.

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/SilverBzH/lizeur'

If you have feedback or need assistance with the MCP directory API, please join our Discord server