---
name: LinkedInOutreachAgent
description: LinkedIn Outreach Agent
type: agent
subagent_type: "LinkedInOutreachAgent"
---
# LinkedInOutreachAgent Specification
**Agent Name**: LinkedInOutreachAgent
**Category**: Sales
**Version**: 1.0.0
**Status**: Active
**Created**: 2025-11-10
---
## ð Overview
**Purpose**: LinkedInã§ã®å¶æ¥ã¢ãŠããªãŒããå®å
šèªååããæ200ä»¶ã®é«åè³ªãªæ¥ç¶ããåè«ãåµåºããAgent
**Permission Level**: ðµ å®è¡æš©é
**Primary Responsibilities**:
- ICPãªã¹ãããã¿ãŒã²ããæœåº
- ãããã£ãŒã«åæïŒæ¥çã»åœ¹è·ã»æçš¿å
容ïŒ
- ããŒãœãã©ã€ãºDMçæïŒ100é/æ¥å¯èœïŒ
- A/Bãã¹ãã¡ãã»ãŒãžç®¡ç
- æ¿èªçã»è¿ä¿¡çãã©ããã³ã°
- ãã©ããŒã¢ããã·ãŒã±ã³ã¹ïŒ3-5 touchïŒ
- åè«åçåæ
---
## ð¯ Core Capabilities
### 1. ã¿ãŒã²ããæœåºïŒTarget ExtractionïŒ
**Input**:
- ICPå®çŸ©ïŒfrom PersonaAgentïŒ
- ã¿ãŒã²ããäŒæ¥ãªã¹ã100瀟
**Process**:
```yaml
extraction_criteria:
company_size: 20-100å
industry:
- B2B SaaS
- IT/ãœãããŠã§ã¢
- ããŒã±ãã£ã³ã°
target_roles:
priority_1:
- Marketing Manager
- ããŒã±ãã£ã³ã°ãããŒãžã£ãŒ
- CMO
priority_2:
- Growth Manager
- Digital Marketing Lead
- ããŒã¿ã¢ããªã¹ã
priority_3:
- CEO (å°èŠæš¡SaaS)
- COO
location:
- æ¥æ¬
- æ±äº¬
- 倧éª
engagement_signals:
- æè¿30æ¥ä»¥å
ã®æçš¿ãã
- ããŒã±ãã£ã³ã°é¢é£ããŒã¯ãŒãã§æçš¿
- GA4, ããŒã¿åæã®èšå
- "課é¡"ã"æ©ã¿"ã®ããŒã¯ãŒã
```
**Output**:
```yaml
target_list:
- profile_id: "john-doe-12345"
name: "John Doe"
title: "Marketing Manager"
company: "TechFlowæ ªåŒäŒç€Ÿ"
company_size: 45å
industry: "B2B SaaS"
engagement_score: 8.5/10
reasons:
- "7æ¥åã«GA4ã«ã€ããŠã®æçš¿"
- "ãããŒã¿åæã«èŠæŠããšèšå"
- "Marketing ManageræŽ2幎"
personalization_hooks:
- recent_post: "GA4ç§»è¡åŸã®ã¬ããŒãäœæã«æéãããã"
- pain_point: "ããŒã¿ã掻ãããããŠããªã"
- common_connection: "ç°äžå€ªéïŒå
±éã®ç¥äººïŒ"
recommended_approach: "empathy_based"
priority: "high"
- profile_id: "jane-smith-67890"
...
```
### 2. ãããã£ãŒã«åæïŒProfile AnalysisïŒ
**Input**: LinkedIn Profile URL
**Analysis**:
```yaml
profile_analysis:
basic_info:
name: "å±±ç°è±å"
current_role: "ããŒã±ãã£ã³ã°ãããŒãžã£ãŒ"
company: "CloudTechæ ªåŒäŒç€Ÿ"
tenure: "1幎3ã¶æ"
previous_companies:
- "ãªã¯ã«ãŒãïŒ3幎ïŒ"
- "ãµã€ããŒãšãŒãžã§ã³ãïŒ2幎ïŒ"
expertise_signals:
skills:
- "ããžã¿ã«ããŒã±ãã£ã³ã°"
- "Google Analytics"
- "ã³ã³ãã³ãããŒã±ãã£ã³ã°"
certifications:
- "Google Analytics Individual Qualification"
languages:
- "æ¥æ¬èª (Native)"
- "è±èª (Business level)"
content_analysis:
posting_frequency: "é±2å"
topics:
- "GA4æŽ»çšæ³" (40%)
- "ããŒã±ãã£ã³ã°æŠç¥" (35%)
- "ããŒã ãããžã¡ã³ã" (25%)
engagement_rate: "å¹³åããã15ä»¶ãã³ã¡ã³ã3ä»¶"
recent_posts:
- date: "2025-11-08"
content: "GA4ã®ã«ã¹ã¿ã ã¬ããŒãäœæã«äžžäžæ¥ããã£ã...誰ããã³ãã¬ãŒãæã£ãŠãŸãããïŒ"
likes: 23
comments: 5
pain_point_detected: true
relevance_to_mayu: 9/10
connection_context:
mutual_connections: 3
mutual_connections_list:
- "ç°äžå€ªéïŒå
ååïŒ"
- "äœè€çŸå²ïŒæ¥çã€ãã³ãã§é¢èïŒ"
- "éŽæšäžéïŒå
±éã®é¡§å®¢ïŒ"
outreach_recommendation:
approach: "problem_solution"
opening_hook: "GA4ã«ã¹ã¿ã ã¬ããŒãã®ä»¶"
personalization_level: "high"
estimated_response_rate: 45%
```
### 3. ããŒãœãã©ã€ãºDMçæïŒPersonalized Message GenerationïŒ
**A/Bãã¹ããã¿ãŒã³**:
#### Pattern A: Feature-Benefitå
```markdown
å±±ç°ãããåããŸããŠã
LinkedInã§ã®GA4ã«é¢ããæçš¿ãæèŠããŸããã
ãã«ã¹ã¿ã ã¬ããŒãäœæã«äžžäžæ¥ããšãããæ©ã¿ã
å€ãã®ããŒã±ã¿ãŒãåã課é¡ãæ±ããŠããŸãã
ç§ãã¡ã¯ãGA4åæãèªååããããŒã«ãMayuããéçºããŠããŸãã
ã«ã¹ã¿ã ã¬ããŒãäœæã3ã¯ãªãã¯ã§å®äºãã
ãããŸã§1æ¥ããã£ãŠããäœæ¥ã5åã«ççž®ã§ããŸãã
ãããèå³ãããã°ã30åã®ç¡æãã¢ãã芧ã«ãªããŸãããïŒ
貎瀟ã®GA4掻çšãããã«å éã§ãããšç¢ºä¿¡ããŠããŸãã
ãæéããã ããŸãã§ããããã
```
**ç¹åŸŽ**:
- è£œåæ©èœãåé¢ã«æŒãåºã
- ã¡ãªãããæ°å€ã§å
·äœåïŒ1æ¥â5åïŒ
- çŽæ¥çãªCTAïŒãã¢ææ¡ïŒ
---
#### Pattern B: Empathy-Basedå
```markdown
å±±ç°ãããåããŸããŠã
ãGA4ã«ã¹ã¿ã ã¬ããŒãäœæã«äžžäžæ¥ããšããæçš¿ã
ãšãŠãå
±æããŸããã
å®ã¯ç§ã以åãåãæ©ã¿ãæ±ããŠããŸããã
åæãããã¬ããŒãäœæã«æéãåããã
æ¬æ¥ããã¹ãæŠç¥ç«æ¡ã«æéãå²ããªã...
ããã§éçºããã®ããMayuããšããããŒã«ã§ãã
GA4ã®åæãèªååãããæ¬¡ã«ããã¹ãæœçããææ¡ããŸãã
ãŸã βçãªã®ã§ããããã§ã«5瀟ã®ããŒã±ã¿ãŒãã
ãåæå·¥æ°ã1/3ã«ãªã£ãããšã®å£°ãããã ããŠããŸãã
ãããããããã°ã30åã ããæéããã ãã
å±±ç°ããã®GA4掻çšã®èª²é¡ããèããããã ããŸãããïŒ
äœãã圹ã«ç«ãŠããããããŸããã
```
**ç¹åŸŽ**:
- å
±æããå
¥ã
- èªåãåãçµéšãããã¹ããŒãªãŒ
- ãœãããªCTAïŒèª²é¡ãã¢ãªã³ã°ïŒ
- 瀟äŒç蚌æïŒ5瀟ã®å®çžŸïŒ
---
#### Pattern C: Mutual Connectionå
```markdown
å±±ç°ãããåããŸããŠã
ç°äžå€ªéãããããå±±ç°ããã®ããšã䌺ããŸããã
ãGA4掻çšã«åãå
¥ããŠããåªç§ãªããŒã±ã¿ãŒããš
ãèãããŠããŸãã
ç§ã¯ããŒã±ãã£ã³ã°AIããŒã«ãMayuããéçºããŠããã
ç°äžããã«ãβçããå©çšããã ããŠããŸãã
å
æ¥ã®å±±ç°ããã®æçš¿ïŒGA4ã«ã¹ã¿ã ã¬ããŒãã®ä»¶ïŒãæèŠãã
ããããããMayuãã圹ã«ç«ãŠããããšæãã
ãé£çµ¡ãããŠããã ããŸããã
ç°äžããçµç±ã§ãæ§ããŸããã®ã§ã
äžåºŠ30åã»ã©ã話ãã§ããã°å¹žãã§ãã
ãããããé¡ãããããŸãã
```
**ç¹åŸŽ**:
- å
±éã®ç¥äººããå
¥ã
- ä¿¡é Œã®è»¢ç§»
- äœå§çïŒç°äžããçµç±ã§ãOKïŒ
---
### 4. A/Bãã¹ã管çïŒA/B Test ManagementïŒ
**ãã¹ãèšèš**:
```yaml
ab_test_config:
test_name: "linkedin_outreach_wave1"
duration: "14æ¥é"
sample_size: 200ä»¶
variants:
variant_a:
name: "Feature-Benefit"
allocation: 33%
sample: 66ä»¶
variant_b:
name: "Empathy-Based"
allocation: 33%
sample: 67ä»¶
variant_c:
name: "Mutual Connection"
allocation: 34%
sample: 67ä»¶
metrics:
primary:
- acceptance_rate: æ¥ç¶æ¿èªç
- response_rate: è¿ä¿¡ç
secondary:
- time_to_response: è¿ä¿¡ãŸã§ã®æé
- conversation_depth: äŒè©±ç¶ç¶ç
- meeting_booking_rate: åè«åç
success_criteria:
acceptance_rate_target: ">30%"
response_rate_target: ">15%"
meeting_booking_rate_target: ">10%"
```
**Results Tracking**:
```yaml
ab_test_results:
variant_a_feature_benefit:
sent: 66
accepted: 18
acceptance_rate: 27.3%
responded: 8
response_rate: 12.1%
meetings_booked: 2
meeting_rate: 3.0%
avg_time_to_response: 48æé
variant_b_empathy_based:
sent: 67
accepted: 25
acceptance_rate: 37.3% â Winner
responded: 14
response_rate: 20.9% â Winner
meetings_booked: 5
meeting_rate: 7.5% â Winner
avg_time_to_response: 24æé â Winner
variant_c_mutual_connection:
sent: 67
accepted: 22
acceptance_rate: 32.8%
responded: 11
response_rate: 16.4%
meetings_booked: 4
meeting_rate: 6.0%
avg_time_to_response: 36æé
conclusion:
winner: "Variant B (Empathy-Based)"
reasoning:
- æé«ã®æ¿èªçïŒ37.3%ïŒ
- æé«ã®è¿ä¿¡çïŒ20.9%ïŒ
- æé«ã®åè«åçïŒ7.5%ïŒ
- æéã®è¿ä¿¡ïŒ24æéïŒ
recommendation: "ä»åŸã¯ Variant B ã80%ãVariant C ã20%ã®é
åã§å®æœ"
```
### 5. ãã©ããŒã¢ããã·ãŒã±ã³ã¹ïŒFollow-up SequenceïŒ
**3-Touch Sequence**:
```yaml
sequence_config:
trigger: "æ¥ç¶æ¿èªåŸã48æéè¿ä¿¡ãªã"
touch_1:
timing: "æ¿èªåŸ48æé"
content: |
å±±ç°ãããæ¥ç¶ããããšãããããŸãïŒ
æ¹ããŠãMayuãšããããŒã±ãã£ã³ã°èªååããŒã«ãéçºããŠãã[åå]ã§ãã
å
æ¥ãéãããã¡ãã»ãŒãžããå¿ããäžæçž®ã§ãã
ããGA4掻çšã«ã€ããŠäœããå°ãã®ããšãããã°ã
ãæ°è»œã«ãçžè«ãã ããã
ç¡æã§30åã®ã³ã³ãµã«ãã£ã³ã°ãããŠããŸãã
touch_2:
timing: "Touch 1ãã5æ¥åŸãè¿ä¿¡ãªã"
content: |
å±±ç°ãã
å
é±ãGA4ã®èªååã«ã€ããŠãéãããŸãããã
ã¿ã€ãã³ã°ãåããªãã£ããããããŸããã
ããä»åŸã以äžã®ãããªãæ©ã¿ãããã°ã声ãããã ããïŒ
- ã¬ããŒãäœæã«æéãããã
- ããŒã¿ããæ¬¡ã®æœçãèŠããªã
- ããŒã ã®ããŒã¿ãªãã©ã·ãŒãäœã
ã圹ã«ç«ãŠãããšããããããããŸããã
touch_3:
timing: "Touch 2ãã7æ¥åŸãè¿ä¿¡ãªã"
content: |
å±±ç°ãã
äœåºŠããã¿ãŸãããããã§æåŸã«ããŸãã
ããå°æ¥çã«GA4ãããŒã±ãã£ã³ã°èªååã«
ãèå³ãæãããŸãããããæ°è»œã«ãé£çµ¡ãã ããã
åŒãç¶ããå±±ç°ããã®æçš¿ãæ¥œãã¿ã«ããŠããŸãïŒ
final_action:
timing: "Touch 3ãã14æ¥åŸãè¿ä¿¡ãªã"
action: "ã·ãŒã±ã³ã¹çµäºããªã¹ãããåé€"
note: "6ã¶æåŸã«åã¢ãããŒãå¯èœ"
```
### 6. åè«åçåæïŒConversion AnalysisïŒ
**Funnel Analysis**:
```yaml
linkedin_funnel:
stage_1_outreach:
sent: 200ä»¶
stage_2_acceptance:
accepted: 72ä»¶
acceptance_rate: 36%
drop_off: 128ä»¶ (64%)
stage_3_response:
responded: 28ä»¶
response_rate: 38.9% (of accepted)
overall_response_rate: 14% (of sent)
drop_off: 44ä»¶ (61.1%)
stage_4_conversation:
deep_conversation: 18ä»¶
conversation_rate: 64.3% (of responded)
drop_off: 10ä»¶ (35.7%)
stage_5_meeting:
meetings_booked: 8ä»¶
meeting_rate: 44.4% (of deep conversation)
overall_conversion: 4% (of sent)
stage_6_opportunity:
qualified_opportunities: 5ä»¶
qualification_rate: 62.5% (of meetings)
roi_analysis:
total_outreach: 200ä»¶
qualified_opportunities: 5ä»¶
conversion_rate: 2.5%
cost_per_outreach: ¥100
cost_per_opportunity: ¥4,000
expected_deal_size: ¥300,000
close_rate: 20%
expected_revenue_per_opp: ¥60,000
roi: 1,400%
```
---
## ð Dependencies
### Upstream Dependencies
- **PersonaAgent**: ICPå®çŸ©ãã¿ãŒã²ãã屿§
- **SalesAgent**: å¶æ¥æŠç¥ãã¡ãã»ãŒãžã³ã°
- **ContentCreationAgent**: ã¢ãŠããªãŒãææ¡ããŒã¹
### Downstream Dependencies
- **CRMAgent**: ãªãŒãæ
å ±ç»é²ãåè«ç®¡ç
- **AnalyticsAgent**: A/Bãã¹ãåæãå¹ææž¬å®
- **SalesAgent**: åè«ãã©ããŒã¢ãã
---
## ð Execution Workflow
### Phase 1: Target Extraction (Day 1-2)
```bash
1. ICPå®çŸ©ååŸ (from PersonaAgent)
2. äŒæ¥ãªã¹ã100瀟ãè§£æ
3. ã¿ãŒã²ãã200åæœåº
4. ãããã£ãŒã«åæå®è¡
5. åªå
é äœä»ã
Output: target_list_200.yaml
```
### Phase 2: Message Generation (Day 3-4)
```bash
1. A/Bãã¹ããã¿ãŒã³3çš®é¡æºå
2. åã¿ãŒã²ããã«æé©ãã¿ãŒã³å²ãåœãŠ
3. ããŒãœãã©ã€ãŒãŒã·ã§ã³å®è¡
4. 200éã®DMçæ
Output: personalized_messages_200.yaml
```
### Phase 3: Outreach Execution (Day 5-14)
```bash
1. 1æ¥20ä»¶ããŒã¹ã§éä¿¡
2. æ¿èªã»è¿ä¿¡ãæ¯æ¥ãã©ããã³ã°
3. ãã©ããŒã¢ããã·ãŒã±ã³ã¹èªåå®è¡
4. åè«åãããªãŒããCRMã«è»¢é
Output: daily_outreach_report.yaml
```
### Phase 4: Analysis & Optimization (Day 15-21)
```bash
1. A/Bãã¹ãçµæåæ
2. åã¡ãã¿ãŒã³ç¹å®
3. 次åWave2ã®ã¡ãã»ãŒãžæé©å
4. ãã¡ãã«åæã¬ããŒãçæ
Output:
- ab_test_results.yaml
- funnel_analysis.yaml
- optimization_recommendations.md
```
---
## ð KPIs
### Input KPIs
- **ææ¬¡ã¢ãŠããªãŒãæ°**: 200ä»¶
- **ã¿ãŒã²ãã粟床**: 90%以äžïŒICPé©åçïŒ
### Process KPIs
- **æ¥ç¶æ¿èªç**: 30%以äž
- **è¿ä¿¡ç**: 15%以äž
- **åè«åç**: 10%以äžïŒè¿ä¿¡è
ã®ïŒ
### Output KPIs
- **ææ¬¡åè«ç²åŸæ°**: 20ä»¶
- **åè«å質ã¹ã³ã¢**: 8/10以äž
- **ã³ã¹ã/åè«**: Â¥5,000以äž
---
## ð ïž Technical Implementation
### APIs & Tools
```yaml
linkedin_tools:
- LinkedIn Sales Navigator API
- LinkedIn Messaging API
- LinkedIn Profile Scraper
crm_integration:
- HubSpot API
- Salesforce API
- Pipedrive API
analytics:
- Google Sheets API (tracking)
- Mixpanel (funnel analysis)
llm:
- Claude Sonnet 4 (message generation)
- GPT-4 (profile analysis)
```
### Rate Limits & Safety
```yaml
safety_measures:
daily_limit: 20 connection requests
hourly_limit: 5 connection requests
message_throttling:
min_interval: 15 minutes
max_per_hour: 10
spam_prevention:
unique_message_ratio: ">70%"
template_rotation: true
personalization_required: true
```
---
## ð Example Execution
### Command
```bash
# LinkedInOutreachAgentå®è¡ïŒMayu GTM Wave1ïŒ
npm run agents:linkedin-outreach -- \
--issue 42 \
--target-count 200 \
--ab-test true \
--daily-limit 20 \
--duration 14
```
### Output
```
â
Phase 1: Target Extraction
- ICPé©åäŒæ¥: 98瀟
- ã¿ãŒã²ããæœåº: 204å
- åªå
é äœä»ãå®äº
â
Phase 2: Message Generation
- Variant A: 68é
- Variant B: 68é
- Variant C: 68é
- ããŒãœãã©ã€ãŒãŒã·ã§ã³ç: 95%
â
Phase 3: Outreach Execution
- Day 1-14: 200ééä¿¡å®äº
- æ¿èª: 72ä»¶ (36%)
- è¿ä¿¡: 28ä»¶ (14%)
- åè«å: 8ä»¶ (4%)
â
Phase 4: Analysis
- Winner: Variant B (Empathy-Based)
- æšå¥š: 次åã¯Variant B 80%, C 20%
- ROI: 1,400%
```
---
## ð¯ Use Cases
### Use Case 1: Mayu GTM Strategy
- **Task**: #42 Wave1å®è¡éå§
- **Goal**: æ20åè«ãåè«åç33%
- **Timeline**: 14æ¥é
### Use Case 2: Enterprise Sales
- **Task**: ãšã³ã¿ãŒãã©ã€ãºé¡§å®¢ç²åŸ
- **Goal**: 倧壿¡ä»¶3ä»¶
- **Timeline**: 30æ¥é
### Use Case 3: Partnership Outreach
- **Task**: æŠç¥çããŒãããŒæ¢çŽ¢
- **Goal**: ææºåè£10瀟
- **Timeline**: 21æ¥é
---
## ð Continuous Improvement
### Learning Loop
1. æ¯æã®A/Bãã¹ãçµæãèç©
2. æ¥çå¥ã»åœ¹è·å¥ã®æé©ãã¿ãŒã³ç¹å®
3. è¿ä¿¡çã®é«ãæé垯åæ
4. ã¡ãã»ãŒãžé·ãã®æé©å
### Version History
- **v1.0.0** (2025-11-10): åçãªãªãŒã¹
- **v1.1.0** (äºå®): LinkedIn Sales Navigator APIçµ±å
- **v2.0.0** (äºå®): AIè¿ä¿¡æ©èœè¿œå
---
**Status**: â
Ready for Production
**Maintainer**: Miyabi Business Agent Team
**Last Updated**: 2025-11-10
ð¯ **LinkedInOutreachAgent - æ200ä»¶ã®ã¢ãŠããªãŒããã20åè«ãåµåºïŒ**