Skip to main content
Glama

Context Engineering MCP Platform

index.jsโ€ข8.71 kB
#!/usr/bin/env node import { Server } from '@modelcontextprotocol/sdk/server/index.js'; import { StdioServerTransport } from '@modelcontextprotocol/sdk/server/stdio.js'; import { CallToolRequestSchema, ListToolsRequestSchema, } from '@modelcontextprotocol/sdk/types.js'; import fetch from 'node-fetch'; const API_BASE_URL = process.env.AI_GUIDES_API_URL || 'http://localhost:8888'; class AIGuidesMCPServer { constructor() { this.server = new Server( { name: 'ai-guides-mcp-server', version: '1.0.0', }, { capabilities: { tools: {}, }, } ); this.setupHandlers(); } async makeRequest(endpoint, options = {}) { try { const url = `${API_BASE_URL}${endpoint}`; const response = await fetch(url, { ...options, headers: { 'Content-Type': 'application/json', ...options.headers, }, }); if (!response.ok) { throw new Error(`API request failed: ${response.status} ${response.statusText}`); } return await response.json(); } catch (error) { throw new Error(`Request failed: ${error.message}`); } } setupHandlers() { this.server.setRequestHandler(ListToolsRequestSchema, async () => ({ tools: [ { name: 'list_ai_guides', description: 'List all available AI guides from OpenAI, Google, and Anthropic', inputSchema: { type: 'object', properties: {}, }, }, { name: 'search_ai_guides', description: 'Search for AI guides by keyword in title, description, or topics', inputSchema: { type: 'object', properties: { query: { type: 'string', description: 'The keyword to search for', }, }, required: ['query'], }, }, { name: 'get_guide_details', description: 'Get full details of a specific AI guide by its title', inputSchema: { type: 'object', properties: { title: { type: 'string', description: 'The exact title of the AI guide', }, }, required: ['title'], }, }, { name: 'get_guide_download_url', description: 'Get the download URL for a specific AI guide', inputSchema: { type: 'object', properties: { title: { type: 'string', description: 'The exact title of the AI guide', }, }, required: ['title'], }, }, { name: 'search_guides_with_gemini', description: 'Search guides using Gemini AI semantic search with grounding', inputSchema: { type: 'object', properties: { query: { type: 'string', description: 'The search query', }, use_grounding: { type: 'boolean', description: 'Whether to use Gemini grounding (default: true)', default: true, }, }, required: ['query'], }, }, { name: 'analyze_guide', description: 'Analyze a guide using Gemini AI to get enhanced summary and insights', inputSchema: { type: 'object', properties: { title: { type: 'string', description: 'The exact title of the AI guide to analyze', }, }, required: ['title'], }, }, { name: 'analyze_guide_url', description: 'Analyze guide content from a URL using Gemini AI', inputSchema: { type: 'object', properties: { url: { type: 'string', description: 'The URL of the guide to analyze', }, }, required: ['url'], }, }, { name: 'compare_guides', description: 'Compare multiple AI guides to find differences and recommendations', inputSchema: { type: 'object', properties: { guide_titles: { type: 'array', items: { type: 'string', }, description: 'List of guide titles to compare (2-5 guides)', minItems: 2, maxItems: 5, }, }, required: ['guide_titles'], }, }, ], })); this.server.setRequestHandler(CallToolRequestSchema, async (request) => { const { name, arguments: args } = request.params; try { switch (name) { case 'list_ai_guides': { const guides = await this.makeRequest('/guides'); return { content: [ { type: 'text', text: JSON.stringify(guides, null, 2), }, ], }; } case 'search_ai_guides': { const guides = await this.makeRequest(`/guides/search?query=${encodeURIComponent(args.query)}`); return { content: [ { type: 'text', text: JSON.stringify(guides, null, 2), }, ], }; } case 'get_guide_details': { const guide = await this.makeRequest(`/guides/${encodeURIComponent(args.title)}`); return { content: [ { type: 'text', text: JSON.stringify(guide, null, 2), }, ], }; } case 'get_guide_download_url': { const result = await this.makeRequest(`/guides/${encodeURIComponent(args.title)}/download-url`); return { content: [ { type: 'text', text: JSON.stringify(result, null, 2), }, ], }; } case 'search_guides_with_gemini': { const result = await this.makeRequest('/guides/search/gemini', { method: 'POST', body: JSON.stringify({ query: args.query, use_grounding: args.use_grounding ?? true, }), }); return { content: [ { type: 'text', text: JSON.stringify(result, null, 2), }, ], }; } case 'analyze_guide': { const result = await this.makeRequest(`/guides/${encodeURIComponent(args.title)}/analyze`); return { content: [ { type: 'text', text: JSON.stringify(result, null, 2), }, ], }; } case 'analyze_guide_url': { const result = await this.makeRequest(`/guides/analyze-url?url=${encodeURIComponent(args.url)}`, { method: 'POST', }); return { content: [ { type: 'text', text: JSON.stringify(result, null, 2), }, ], }; } case 'compare_guides': { const result = await this.makeRequest('/guides/compare', { method: 'POST', body: JSON.stringify({ guide_titles: args.guide_titles, }), }); return { content: [ { type: 'text', text: JSON.stringify(result, null, 2), }, ], }; } default: throw new Error(`Unknown tool: ${name}`); } } catch (error) { return { content: [ { type: 'text', text: `Error: ${error.message}`, }, ], }; } }); } async run() { const transport = new StdioServerTransport(); await this.server.connect(transport); console.error('AI Guides MCP Server running on stdio'); } } const server = new AIGuidesMCPServer(); server.run().catch(console.error);

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/ShunsukeHayashi/context_engineering_MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server