Skip to main content
Glama

agentic_metrics_view

Monitor and analyze Shikigaku theory KPIs through a dedicated dashboard to track performance metrics and development progress.

Instructions

識学理論KPIダッシュボード表示

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault

No arguments

Implementation Reference

  • The main handler function that executes the 'agentic_metrics_view' tool. It dynamically imports fs and path modules, reads the KPI dashboard Markdown file from .ai/dashboard.md, and returns its content as a text response. If the file does not exist, it returns an error message instructing to run 'npm run dashboard:update'.
    private async handleMetricsView() { const fs = await import('fs/promises'); const path = await import('path'); try { const dashboardPath = path.join(process.cwd(), '.ai', 'dashboard.md'); const dashboard = await fs.readFile(dashboardPath, 'utf-8'); return { content: [ { type: 'text', text: dashboard } ] }; } catch (_error) { return { content: [ { type: 'text', text: '⚠️ ダッシュボードファイルが見つかりません。\n\n実行: `npm run dashboard:update`' } ] }; } }
  • server.ts:162-169 (registration)
    Registration of the 'agentic_metrics_view' tool in the TOOLS array. Includes the tool name, description ('識学理論KPIダッシュボード表示' meaning 'Display of Shishugaku theory KPI dashboard'), and an empty input schema indicating no parameters are required. This array is returned by the listTools handler.
    { name: 'agentic_metrics_view', description: '識学理論KPIダッシュボード表示', inputSchema: { type: 'object', properties: {} } }
  • server.ts:244-245 (registration)
    Dispatch/registration case in the CallToolRequestSchema handler's switch statement, which routes calls to 'agentic_metrics_view' to the handleMetricsView() method.
    case 'agentic_metrics_view': return await this.handleMetricsView();
  • Input schema definition for the tool, specifying an empty object with no required properties.
    inputSchema: { type: 'object', properties: {} }

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/ShunsukeHayashi/agentic-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server