Skip to main content
Glama

Agentic MCP Weather System

by Shivbaj
setup-ollama.shโ€ข2.11 kB
#!/bin/bash # Ollama Setup Script for Weather MCP System # This script sets up Ollama and downloads the required Llama3 model set -e echo "๐Ÿฆ™ Setting up Ollama for Weather MCP System..." # Check if Ollama is installed if ! command -v ollama &> /dev/null; then echo " Ollama is not installed. Please install it first:" echo " macOS/Linux: brew install ollama" echo " Or visit: https://ollama.ai/download" exit 1 fi echo "Ollama found" # Check if Ollama is running if ! curl -s http://localhost:11434/api/version &> /dev/null; then echo " Ollama is not running. Starting Ollama..." # Start Ollama in the background ollama serve & OLLAMA_PID=$! # Wait for Ollama to start echo "โณ Waiting for Ollama to start..." for i in {1..30}; do if curl -s http://localhost:11434/api/version &> /dev/null; then echo " Ollama is now running (PID: $OLLAMA_PID)" break fi if [ $i -eq 30 ]; then echo " Ollama failed to start within 30 seconds" exit 1 fi sleep 1 done else echo " Ollama is already running" fi # Check if Llama3 model is already installed if ollama list | grep -q "llama3"; then echo " Llama3 model is already installed" else echo " Downloading Llama3 model (this may take several minutes)..." ollama pull llama3 echo "Llama3 model downloaded successfully" fi # Test the model echo "๐Ÿงช Testing Llama3 model..." if echo "Hello, this is a test message. Respond with 'OK' if you can read this." | ollama run llama3 --timeout 10s | grep -q -i "ok"; then echo "Llama3 model is working correctly" else echo " Llama3 model test completed (check output above)" fi # Show installed models echo "" echo " Installed Ollama models:" ollama list echo "" echo "Ollama setup complete!" echo "" echo "Next steps:" echo "1. Keep Ollama running: ollama serve" echo "2. Set up your environment: cp .env.example .env" echo "3. Start the weather server: python main.py start" echo "" echo "For Docker deployment:" echo " docker-compose up -d"

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Shivbaj/MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server