# Slot Resolution Integration Summary
## β
Integration Complete
The **slot resolution system** has been successfully integrated into the MCP server. This document explains **where** and **how** the integration was implemented.
---
## π Integration Points
### 1. **server_initializer.py** - System Initialization
**Location:** Lines 101-145, 271-329
**What was added:**
#### A. New `SlotResolutionSystem` Class (Lines 101-145)
```python
class SlotResolutionSystem:
"""Manages slot resolution for entity name-to-ID conversion."""
def initialize(self) -> Optional[object]:
# Initializes:
# - ElasticsearchMatchingService (uses existing search_client)
# - SlotResolver (core resolution engine)
# - SlotResolutionMiddleware (request transformation)
```
**Purpose:** Encapsulates all slot resolution initialization logic in a dedicated system class, following the same pattern as `SearchSystem`, `HierarchyCacheSystem`, etc.
#### B. Updated `ServerInitializer.__init__()` (Lines 271-285)
```python
def __init__(self, config: AppConfig):
# ... existing code ...
self.slot_resolution_system = None # β NEW: Created after search system
# ... existing code ...
self.slot_resolution_middleware = None # β NEW: Component reference
```
**Purpose:** Added instance variables to track the slot resolution system and middleware.
#### C. Updated `ServerInitializer.initialize_all()` (Lines 287-329)
```python
def initialize_all(self) -> dict:
# ... existing initialization steps ...
# 3. Initialize slot resolution system (NEW)
self.slot_resolution_system = SlotResolutionSystem(self.config, self.search_client)
self.slot_resolution_middleware = self.slot_resolution_system.initialize()
# ... rest of initialization ...
return {
# ... existing components ...
'slot_resolution_middleware': self.slot_resolution_middleware, # β NEW
}
```
**Purpose:** Initializes the slot resolution system after the search client (since it depends on it) and returns the middleware in the components dictionary.
---
### 2. **tool_execution_handler.py** - Request Processing
**Location:** Lines 73-174, 177-249
**What was added:**
#### A. Updated `execute_create_request_tool()` Function (Lines 73-174)
**Before:**
```python
async def execute_create_request_tool(
auth_token: str,
tool_name: str,
**kwargs
) -> Dict[str, Any]:
# Just created request with kwargs as-is
```
**After:**
```python
async def execute_create_request_tool(
auth_token: str,
tool_name: str,
slot_resolution_middleware=None, # β NEW parameter
**kwargs
) -> Dict[str, Any]:
# Apply slot resolution if available
if slot_resolution_middleware:
resolution_result = await slot_resolution_middleware.resolve_request(
request_payload=kwargs,
module="request",
user_id=auth_token[:20]
)
# Handle disambiguation
if resolution_result.status == "DISAMBIGUATION_REQUIRED":
return {
"status": "disambiguation_required",
"disambiguations": resolution_result.disambiguations,
# ...
}
# Handle errors
elif resolution_result.status == "ERROR":
return {"error": True, "message": resolution_result.error}
# Use resolved payload
elif resolution_result.status == "READY":
kwargs = resolution_result.payload # β Entity names converted to IDs
# Continue with request creation using resolved kwargs
```
**Purpose:** Intercepts the request payload **before** sending to backend, applies slot resolution to convert entity names to IDs, and handles disambiguation/errors.
#### B. Updated `ToolExecutionRouter` Class (Lines 177-249)
**Before:**
```python
class ToolExecutionRouter:
def __init__(self):
self._handlers = {"create_request": execute_create_request_tool}
self._default_handler = execute_dynamic_tool
async def execute(self, auth_token, tool_name, **kwargs):
handler = self._handlers.get(tool_name, self._default_handler)
return await handler(auth_token=auth_token, tool_name=tool_name, **kwargs)
```
**After:**
```python
class ToolExecutionRouter:
def __init__(self, slot_resolution_middleware=None): # β NEW parameter
self._handlers = {"create_request": execute_create_request_tool}
self._default_handler = execute_dynamic_tool
self._slot_resolution_middleware = slot_resolution_middleware # β NEW
def set_slot_resolution_middleware(self, middleware): # β NEW method
"""Set the slot resolution middleware after initialization."""
self._slot_resolution_middleware = middleware
async def execute(self, auth_token, tool_name, **kwargs):
handler = self._handlers.get(tool_name, self._default_handler)
# Pass slot resolution middleware to create_request handler
if handler == execute_create_request_tool:
return await handler(
auth_token=auth_token,
tool_name=tool_name,
slot_resolution_middleware=self._slot_resolution_middleware, # β NEW
**kwargs
)
else:
return await handler(auth_token=auth_token, tool_name=tool_name, **kwargs)
```
**Purpose:** Stores the slot resolution middleware and passes it to the `create_request` handler when executing tools.
---
### 3. **mcp_server.py** - Server Startup
**Location:** Lines 34-47
**What was added:**
```python
# Initialize all server components
initializer = ServerInitializer(config)
components = initializer.initialize_all()
# Attach slot resolution middleware to execution router (NEW)
if components.get('slot_resolution_middleware'):
from tool_execution_handler import get_execution_router
execution_router = get_execution_router()
execution_router.set_slot_resolution_middleware(components['slot_resolution_middleware'])
logger.info("β
Slot resolution middleware attached to execution router")
# Register dynamic tool middleware
mcp.add_middleware(components['middleware'])
logger.info("Dynamic tool middleware registered")
```
**Purpose:** Wires up the slot resolution middleware to the global execution router after all components are initialized.
---
## π Data Flow
Here's how a request flows through the system with slot resolution:
```
1. AI Agent/LLM sends request
β
Input: {"subject": "Laptop issue", "impact": "high", "assignee": "shivam"}
2. MCP Server receives request
β
3. DynamicToolMiddleware intercepts
β
4. ToolExecutionRouter.execute() called
β
5. execute_create_request_tool() invoked
β
6. SlotResolutionMiddleware.resolve_request() called
β
ββ Loads field mappings from config/field_mappings.json
ββ Identifies fields needing resolution: "impact", "assignee"
ββ For each field:
β ββ Normalizes input ("high" β "high", "shivam" β "shivam")
β ββ Checks exact match cache
β ββ Checks alias mappings
β ββ Performs Elasticsearch fuzzy search
β ββ Applies decisioning (single match vs. multiple matches)
β
7. Resolution result returned
β
ββ READY: {"subject": "Laptop issue", "impactId": 2, "technicianId": 433}
ββ DISAMBIGUATION_REQUIRED: Returns options for user to choose
ββ ERROR: Returns error message
8. Resolved payload sent to backend API
β
9. Response returned to AI Agent/LLM
```
---
## π― How It Works for AI Agents/LLMs
### Scenario 1: Simple Resolution (Single Match)
**AI Agent Input:**
```json
{
"subject": "Laptop not working",
"impact": "high",
"urgency": "high"
}
```
**Slot Resolution Process:**
1. Looks up "impact" field in `field_mappings.json` β finds `referenceTo: "impact"`, `dbKey: "impactId"`
2. Searches Elasticsearch `apolo_impact` index for "high"
3. Finds single match: `{id: 2, name: "High", displayName: "High"}`
4. Adds `impactId: 2` to payload
5. Repeats for "urgency"
**Output to Backend:**
```json
{
"subject": "Laptop not working",
"impactId": 2,
"urgencyId": 2
}
```
### Scenario 2: Disambiguation (Multiple Matches)
**AI Agent Input:**
```json
{
"assignee": "john"
}
```
**Slot Resolution Process:**
1. Searches for "john" in `apolo_user` index with filter `userType: "technician"`
2. Finds 3 matches:
- John Smith (ID: 101)
- John Doe (ID: 102)
- Johnny Walker (ID: 103)
3. Returns disambiguation request
**Output to AI Agent:**
```json
{
"status": "disambiguation_required",
"message": "Multiple matches found for some fields. Please select the correct option.",
"disambiguations": {
"assignee": [
{"id": 101, "name": "John Smith", "email": "john.smith@company.com"},
{"id": 102, "name": "John Doe", "email": "john.doe@company.com"},
{"id": 103, "name": "Johnny Walker", "email": "johnny.walker@company.com"}
]
}
}
```
**AI Agent can then retry with:**
```json
{
"technicianId": 101 // Directly use the ID
}
```
### Scenario 3: No Match Found
**AI Agent Input:**
```json
{
"impact": "super_critical" // Invalid value
}
```
**Slot Resolution Process:**
1. Searches for "super_critical" in `apolo_impact` index
2. No matches found
3. Field is marked as "required" in config
4. Returns error
**Output to AI Agent:**
```json
{
"error": true,
"message": "Failed to resolve entities: Required field 'impact' could not be resolved: No impact found matching 'super_critical'"
}
```
---
## β
Verification
### Server Startup Logs
When the MCP server starts, you should see:
```
2025-10-23 12:27:07,996 - server_initializer - INFO - Initializing slot resolution system...
2025-10-23 12:27:08,001 - slot_resolution.services.elasticsearch_service - INFO - ElasticsearchMatchingService initialized
2025-10-23 12:27:08,001 - slot_resolution.core.resolver - INFO - SlotResolver initialized with all services
2025-10-23 12:27:08,001 - slot_resolution.middleware.slot_resolution_middleware - INFO - SlotResolutionMiddleware initialized for tenant 'apolo'
2025-10-23 12:27:08,001 - server_initializer - INFO - β
Slot resolution system initialized successfully
...
2025-10-23 12:27:10,101 - tool_execution_handler - INFO - β
Slot resolution middleware attached to router
2025-10-23 12:27:10,101 - __main__ - INFO - β
Slot resolution middleware attached to execution router
```
### Integration Test Results
The integration test suite (`test_slot_resolution_integration.py`) passed all 5 tests:
```
β
PASSED: Entity Names Resolution
β
PASSED: Entity IDs Pass-through
β
PASSED: Mixed Names and IDs
β
PASSED: Ambiguous Names (Disambiguation)
β
PASSED: Invalid Entity Names
Total: 5/5 tests passed
```
---
## π¦ Files Modified
1. **server_initializer.py** - Added `SlotResolutionSystem` class and initialization logic
2. **tool_execution_handler.py** - Added slot resolution to `execute_create_request_tool()` and `ToolExecutionRouter`
3. **mcp_server.py** - Wired up slot resolution middleware to execution router
## π¦ Files Created
1. **test_slot_resolution_integration.py** - Integration test suite for AI agent scenarios
2. **test_slot_resolution_direct.py** - Direct test of slot resolution middleware
3. **test_elasticsearch_data.py** - Elasticsearch data verification script
4. **SLOT_RESOLUTION_INTEGRATION_SUMMARY.md** - This document
---
## π Summary
**Slot resolution is now fully integrated into the MCP server!**
- β
**Initialized** in `server_initializer.py` as part of server startup
- β
**Integrated** into `tool_execution_handler.py` to process requests
- β
**Wired up** in `mcp_server.py` to connect all components
- β
**Tested** with comprehensive integration tests
- β
**Ready** to handle AI agent/LLM requests with entity name-to-ID conversion
The system will automatically:
1. Convert entity names to IDs when possible
2. Request disambiguation when multiple matches are found
3. Return errors for invalid/non-existent entities
4. Pass through existing IDs unchanged
5. Handle mixed requests with both names and IDs
**The MCP server is now production-ready with slot resolution!** π