Skip to main content
Glama

Constrained Optimization MCP Server

pyproject.tomlโ€ข2.87 kB
[project] name = "constrained-opt-mcp" version = "1.0.1" description = "General Purpose MCP Server for Constrained Optimization - AI agents for optimization tasks such as portfolio optimization, scheduling, and combinatorial problems" authors = [ {name = "Rajnish Sharma", email = "rajnish.sst1@gmail.com"} ] readme = "README.md" requires-python = ">=3.10" license = {text = "Apache-2.0"} keywords = [ "optimization", "mcp", "model-context-protocol", "constraint-satisfaction", "linear-programming", "combinatorial-optimization", "portfolio-optimization", "scheduling", "ai-agents", "mathematical-optimization", "operations-research", "financial-optimization" ] classifiers = [ "Development Status :: 4 - Beta", "Intended Audience :: Developers", "Intended Audience :: Science/Research", "Intended Audience :: Financial and Insurance Industry", "License :: OSI Approved :: Apache Software License", "Operating System :: OS Independent", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.10", "Programming Language :: Python :: 3.11", "Programming Language :: Python :: 3.12", "Topic :: Scientific/Engineering :: Mathematics", "Topic :: Scientific/Engineering :: Artificial Intelligence", "Topic :: Office/Business :: Financial :: Investment", "Topic :: Software Development :: Libraries :: Python Modules", "Topic :: System :: Distributed Computing", "Framework :: Jupyter", ] dependencies = [ "z3-solver>=4.14.1.0", "pydantic>=2.0.0", "returns>=0.20.0", "fastmcp>=0.1.0", "cvxpy>=1.6.0", "ortools<9.15.0", "highspy>=1.11.0", "numpy>=1.24.0", "scipy>=1.10.0", "pandas>=2.0.0", "matplotlib>=3.7.0", "seaborn>=0.12.0", "jupyter>=1.0.0", "ipywidgets>=8.0.0", ] [dependency-groups] dev = [ "black>=25.1.0", "pytest>=8.4.0", "ruff>=0.11.2", ] [build-system] requires = ["hatchling"] build-backend = "hatchling.build" [tool.ruff] line-length = 120 indent-width = 4 target-version = "py312" [tool.ruff.lint] select = ["E", "F", "B", "I", "N", "UP", "ANN", "RUF"] [tool.ruff.lint.per-file-ignores] "examples/*.py" = ["ANN201", "ANN001"] [tool.pytest.ini_options] testpaths = ["tests", "examples"] python_files = ["test_*.py", "*_test.py", "*.py"] python_functions = ["test_*"] filterwarnings = [ "ignore::DeprecationWarning", "ignore::PendingDeprecationWarning", "ignore::UserWarning:cvxpy.*", "ignore:Type google._upb._message.*:DeprecationWarning", ] norecursedirs = ["examples/full"] [tool.hatch.build.targets.wheel] packages = ["constrained_opt_mcp"] [tool.hatch.build.targets.wheel.scripts] constrained-opt-mcp = "constrained_opt_mcp.server.main:main" [project.scripts] constrained-opt-mcp = "constrained_opt_mcp.server.main:main"

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Sharmarajnish/MCP-Constrained-Optimization'

If you have feedback or need assistance with the MCP directory API, please join our Discord server