Skip to main content
Glama

Constrained Optimization MCP Server

client.pyโ€ข1.92 kB
import os import sys from pathlib import Path import anthropic with open(Path(__file__).parent / "prompt.md") as f: prompt = f.read() if not os.getenv("ANTHROPIC_API_KEY"): print("Error: Set ANTHROPIC_API_KEY environment variable") sys.exit(1) client = anthropic.Anthropic() flowsheet_file = client.beta.files.upload( file=( "flowsheet_data.csv", open(Path(__file__).parent / "flowsheet_data.xlsx", "rb"), "text/csv", ) ) metadata_file = client.beta.files.upload( file=( "flowsheet_metadata.csv", open(Path(__file__).parent / "flowsheet_metadata.xlsx", "rb"), "text/csv", ) ) response = client.beta.messages.create( model="claude-sonnet-4-20250514", max_tokens=4000, messages=[ { "role": "user", "content": [ {"type": "text", "text": prompt}, { "type": "document", "source": {"type": "file", "file_id": flowsheet_file.id}, }, { "type": "document", "source": {"type": "file", "file_id": metadata_file.id}, }, ], } ], mcp_servers=[ { "type": "url", "url": "http://localhost:8081", "name": "usolver", "tool_configuration": {"enabled": True}, "allowed_tools": [ "solve_z3", "solve_z3_simple", "solve_highs_problem", "simple_highs_solver", "solve_cvxpy_problem", "simple_cvxpy_solver", "solve_ortools_problem", ], } ], betas=["files-api-2025-04-14"], extra_headers={"anthropic-beta": "mcp-client-2025-04-04"}, ) for block in response.content: if hasattr(block, "text"): print(block.text)

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Sharmarajnish/MCP-Constrained-Optimization'

If you have feedback or need assistance with the MCP directory API, please join our Discord server