Skip to main content
Glama

Constrained Optimization MCP Server

mathematical_reference.md11.2 kB
# Mathematical Reference for Constrained Optimization MCP Server ## Table of Contents 1. [Optimization Theory Fundamentals](#optimization-theory-fundamentals) 2. [Problem Classifications](#problem-classifications) 3. [Solver Mathematical Foundations](#solver-mathematical-foundations) 4. [Portfolio Optimization Mathematics](#portfolio-optimization-mathematics) 5. [Scheduling and Operations Research](#scheduling-and-operations-research) 6. [Combinatorial Optimization](#combinatorial-optimization) 7. [Economic Production Planning](#economic-production-planning) 8. [Complexity Analysis](#complexity-analysis) 9. [Solution Methods](#solution-methods) 10. [References](#references) ## Optimization Theory Fundamentals ### General Constrained Optimization Problem The general form of a constrained optimization problem is: $$\min_{x \in \mathbb{R}^n} f(x) \quad \text{subject to} \quad \begin{cases} g_i(x) \leq 0, & i = 1, \ldots, m \\ h_j(x) = 0, & j = 1, \ldots, p \\ x \in \mathcal{X} \end{cases}$$ Where: - $f: \mathbb{R}^n \to \mathbb{R}$ is the **objective function** - $g_i: \mathbb{R}^n \to \mathbb{R}$ are **inequality constraints** - $h_j: \mathbb{R}^n \to \mathbb{R}$ are **equality constraints** - $\mathcal{X} \subseteq \mathbb{R}^n$ is the **feasible region** ### Duality Theory For any optimization problem, there exists a **dual problem**: **Primal:** $\min_{x} f(x) \quad \text{s.t.} \quad g_i(x) \leq 0, \quad h_j(x) = 0$ **Dual:** $\max_{\lambda, \nu} \mathcal{L}(x^*, \lambda, \nu) \quad \text{s.t.} \quad \lambda \geq 0$ Where $\mathcal{L}(x, \lambda, \nu) = f(x) + \sum_i \lambda_i g_i(x) + \sum_j \nu_j h_j(x)$ is the **Lagrangian**. ### Optimality Conditions #### Karush-Kuhn-Tucker (KKT) Conditions For a solution $x^*$ to be optimal, there must exist multipliers $\lambda^* \geq 0$ and $\nu^*$ such that: 1. **Stationarity:** $\nabla f(x^*) + \sum_i \lambda_i^* \nabla g_i(x^*) + \sum_j \nu_j^* \nabla h_j(x^*) = 0$ 2. **Primal feasibility:** $g_i(x^*) \leq 0, \quad h_j(x^*) = 0$ 3. **Dual feasibility:** $\lambda_i^* \geq 0$ 4. **Complementary slackness:** $\lambda_i^* g_i(x^*) = 0$ ## Problem Classifications ### 1. Linear Programming (LP) $$\min_{x} c^T x \quad \text{subject to} \quad Ax \leq b, \quad x \geq 0$$ **Properties:** - Convex optimization problem - Polynomial time solvable - Simplex method, interior point methods ### 2. Quadratic Programming (QP) $$\min_{x} \frac{1}{2}x^T Q x + c^T x \quad \text{subject to} \quad Ax \leq b, \quad x \geq 0$$ **Properties:** - Convex if $Q \succeq 0$ (positive semidefinite) - Interior point methods, active set methods ### 3. Convex Optimization $$\min_{x} f(x) \quad \text{subject to} \quad g_i(x) \leq 0, \quad h_j(x) = 0$$ Where $f$ and $g_i$ are convex functions, and $h_j$ are affine functions. **Properties:** - Global optimum is unique - Polynomial time solvable - Duality gap is zero ### 4. Constraint Satisfaction Problems (CSP) Find $x \in \mathcal{D}$ such that $C_1(x) \land C_2(x) \land \ldots \land C_k(x)$ Where $\mathcal{D}$ is the domain and $C_i$ are logical constraints. **Properties:** - NP-Complete in general - Constraint propagation, backtracking - Arc consistency, path consistency ## Solver Mathematical Foundations ### Z3 SMT Solver **Satisfiability Modulo Theories (SMT)** extends Boolean satisfiability with theories: - **Linear Arithmetic:** $x + 2y \leq 5$ - **Non-linear Arithmetic:** $x^2 + y^2 \leq 1$ - **Bit-vectors:** $x \& y = z$ - **Arrays:** $A[i] = v$ - **Uninterpreted Functions:** $f(x) = g(y)$ **Decision Procedures:** - DPLL(T) algorithm - Theory combination - Model-based quantifier instantiation ### CVXPY Convex Optimization **Disciplined Convex Programming (DCP)** rules: 1. **Atoms:** $x^2, |x|, \log(x), \exp(x)$ 2. **Composition:** $f(g(x))$ where $f$ convex, $g$ affine 3. **Affine transformations:** $Ax + b$ **Canonicalization:** - Problem transformed to standard form - Conic programming formulation - Interior point methods ### HiGHS Linear Programming **Simplex Method:** - Basic feasible solutions - Pivot operations - Bland's rule for cycling prevention **Interior Point Methods:** - Primal-dual path following - Newton's method - Barrier functions ### OR-Tools Constraint Programming **Constraint Propagation:** - Domain reduction - Arc consistency (AC-3, AC-4) - Path consistency **Search Strategies:** - Backtracking - Branch and bound - Local search ## Portfolio Optimization Mathematics ### Markowitz Mean-Variance Optimization $$\max_{w} \mu^T w - \frac{\lambda}{2} w^T \Sigma w \quad \text{subject to} \quad \sum_{i=1}^{n} w_i = 1, \quad w_i \geq 0$$ Where: - $w \in \mathbb{R}^n$: portfolio weights - $\mu \in \mathbb{R}^n$: expected returns - $\Sigma \in \mathbb{R}^{n \times n}$: covariance matrix - $\lambda \geq 0$: risk aversion parameter ### Black-Litterman Model **Expected Returns:** $$\Pi = \lambda \Sigma w_{market}$$ **Posterior Returns:** $$\mu_{BL} = [(\tau \Sigma)^{-1} + P^T \Omega^{-1} P]^{-1} [(\tau \Sigma)^{-1} \Pi + P^T \Omega^{-1} Q]$$ Where: - $\Pi$: market implied returns - $P$: pick matrix for views - $Q$: view returns - $\Omega$: uncertainty matrix - $\tau$: scaling factor ### Risk Parity Optimization $$\min_{w} \sum_{i=1}^{n} \sum_{j=1}^{n} (w_i \frac{\partial \sigma_p}{\partial w_i} - w_j \frac{\partial \sigma_p}{\partial w_j})^2$$ Where $\sigma_p = \sqrt{w^T \Sigma w}$ is portfolio volatility. ### ESG-Constrained Optimization $$\max_{w} \mu^T w - \frac{\lambda}{2} w^T \Sigma w \quad \text{subject to} \quad \begin{cases} \sum_{i=1}^{n} w_i = 1 \\ w_i \geq 0 \\ \sum_{i=1}^{n} w_i \cdot ESG_i \geq \theta \end{cases}$$ Where $ESG_i$ is the ESG score of asset $i$ and $\theta$ is the minimum ESG threshold. ## Scheduling and Operations Research ### Job Shop Scheduling **Variables:** - $s_{ij} \geq 0$: start time of operation $j$ of job $i$ - $C_{max}$: makespan **Objective:** $$\min C_{max}$$ **Constraints:** 1. **Precedence:** $s_{ij} + p_{ij} \leq s_{i,j+1}$ 2. **Resource capacity:** $s_{ij} + p_{ij} \leq s_{kl}$ or $s_{kl} + p_{kl} \leq s_{ij}$ for same machine 3. **Makespan:** $s_{ij} + p_{ij} \leq C_{max}$ ### Nurse Scheduling **Variables:** - $x_{n,s,d} \in \{0,1\}$: nurse $n$ works shift $s$ on day $d$ - $y_{n,d} \in \{0,1\}$: nurse $n$ works on day $d$ **Objective:** $$\min \sum_{n,s,d} c_{n,s} x_{n,s,d} + \sum_{n,d} p_n y_{n,d}$$ **Constraints:** 1. **Coverage:** $\sum_n x_{n,s,d} \geq R_{s,d}$ 2. **One shift per day:** $\sum_s x_{n,s,d} \leq 1$ 3. **Consecutive days limit:** $\sum_{d=k}^{k+L} y_{n,d} \leq L_{max}$ ## Combinatorial Optimization ### N-Queens Problem **Variables:** $x_{i,j} \in \{0,1\}$ (queen at position $(i,j)$) **Constraints:** 1. **Row:** $\sum_{j=1}^{n} x_{i,j} = 1 \quad \forall i$ 2. **Column:** $\sum_{i=1}^{n} x_{i,j} = 1 \quad \forall j$ 3. **Diagonal:** $\sum_{i-j=k} x_{i,j} \leq 1 \quad \forall k$ 4. **Anti-diagonal:** $\sum_{i+j=k} x_{i,j} \leq 1 \quad \forall k$ ### Knapsack Problem **0/1 Knapsack:** $$\max \sum_{i=1}^{n} v_i x_i \quad \text{subject to} \quad \sum_{i=1}^{n} w_i x_i \leq W, \quad x_i \in \{0,1\}$$ **Multiple Knapsack:** $$\max \sum_{i=1}^{n} \sum_{j=1}^{m} v_i x_{ij} \quad \text{subject to} \quad \begin{cases} \sum_{j=1}^{m} x_{ij} \leq 1 \quad \forall i \\ \sum_{i=1}^{n} w_i x_{ij} \leq W_j \quad \forall j \\ x_{ij} \in \{0,1\} \end{cases}$$ ## Economic Production Planning ### Multi-Period Production Planning **Variables:** - $x_{it} \geq 0$: production quantity of product $i$ in period $t$ - $I_{it} \geq 0$: inventory level of product $i$ at end of period $t$ - $y_{it} \in \{0,1\}$: setup indicator for product $i$ in period $t$ **Objective:** $$\min \sum_{i \in I} \sum_{t=1}^{T} (p_i x_{it} + h_i I_{it} + s_i y_{it})$$ **Constraints:** 1. **Inventory balance:** $I_{i,t-1} + x_{it} - I_{it} = D_{it}$ 2. **Resource capacity:** $\sum_{i \in I} c_{ir} x_{it} \leq K_{rt}$ 3. **Setup:** $x_{it} \leq M y_{it}$ ### Capacitated Lot Sizing Problem (CLSP) **Single product, multiple periods:** $$\min \sum_{t=1}^{T} (p_t x_t + h_t I_t + s_t y_t)$$ **Subject to:** - $I_{t-1} + x_t - I_t = D_t$ - $x_t \leq M y_t$ - $x_t, I_t \geq 0, \quad y_t \in \{0,1\}$ ## Complexity Analysis ### Problem Complexity Classes | Problem Type | Complexity | Solver | Notes | |--------------|------------|--------|-------| | Linear Programming | P | HiGHS | Simplex, Interior Point | | Convex Optimization | P | CVXPY | Interior Point | | Constraint Satisfaction | NP-Complete | Z3 | SMT Solving | | Job Shop Scheduling | NP-Hard | OR-Tools | Heuristics | | Knapsack (0/1) | NP-Complete | OR-Tools | Dynamic Programming | | N-Queens | NP-Complete | OR-Tools | Backtracking | | Portfolio Optimization | P | CVXPY | Quadratic Programming | ### Approximation Algorithms **Performance Ratio:** $\frac{OPT}{ALG} \leq \rho$ where $ALG$ is algorithm solution and $OPT$ is optimal solution. **Examples:** - Knapsack greedy: $\rho = 2$ - Job shop scheduling: Various heuristics - Portfolio optimization: Exact for convex case ## Solution Methods ### Exact Methods 1. **Branch and Bound** - Divide problem into subproblems - Prune suboptimal branches - Maintain best solution found 2. **Cutting Plane Methods** - Add valid inequalities - Strengthen LP relaxation - Gomory cuts, Chvátal-Gomory cuts 3. **Dynamic Programming** - Optimal substructure - Overlapping subproblems - Memoization ### Heuristic Methods 1. **Genetic Algorithms** - Population-based search - Crossover and mutation - Fitness evaluation 2. **Simulated Annealing** - Probabilistic acceptance - Temperature schedule - Local search 3. **Tabu Search** - Memory-based search - Tabu list - Aspiration criteria ### Decomposition Methods 1. **Dantzig-Wolfe Decomposition** - Master problem + subproblems - Column generation - Pricing problem 2. **Benders Decomposition** - Master problem + subproblem - Cut generation - Feasibility cuts ## References 1. Boyd, S., & Vandenberghe, L. (2004). *Convex Optimization*. Cambridge University Press. 2. Nocedal, J., & Wright, S. J. (2006). *Numerical Optimization*. Springer. 3. Markowitz, H. (1952). Portfolio Selection. *Journal of Finance*, 7(1), 77-91. 4. Black, F., & Litterman, R. (1992). Global Portfolio Optimization. *Financial Analysts Journal*, 48(5), 28-43. 5. Pinedo, M. (2016). *Scheduling: Theory, Algorithms, and Systems*. Springer. 6. Lawler, E. L. (1976). *Combinatorial Optimization: Networks and Matroids*. Holt, Rinehart and Winston. 7. Silver, E. A., Pyke, D. F., & Peterson, R. (1998). *Inventory and Production Management in Supply Chains*. Wiley. 8. de Moura, L., & Bjørner, N. (2011). Satisfiability Modulo Theories: Introduction and Applications. *Communications of the ACM*, 54(7), 69-77. 9. Diamond, S., & Boyd, S. (2016). CVXPY: A Python-embedded modeling language for convex optimization. *Journal of Machine Learning Research*, 17(83), 1-5. 10. Huangfu, Q., & Hall, J. A. J. (2018). Parallelizing the dual revised simplex method. *Mathematical Programming Computation*, 10(1), 119-142.

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Sharmarajnish/MCP-Constrained-Optimization'

If you have feedback or need assistance with the MCP directory API, please join our Discord server