Skip to main content
Glama

Ultimate MCP Coding Platform

PRODUCTION_ENHANCEMENTS.md12.3 kB
# Production Enhancements - Technical Documentation ## Overview This document describes the production-grade enhancements added to the Ultimate MCP Platform during the comprehensive code audit and optimization phase. ## New Features ### 1. Circuit Breaker Pattern (`mcp_server/utils/circuit_breaker.py`) **Purpose**: Prevent cascading failures by temporarily blocking calls to failing services. **Features**: - Three states: CLOSED (normal), OPEN (blocking), HALF_OPEN (testing recovery) - Configurable failure thresholds and timeouts - Comprehensive metrics collection - Registry for managing multiple breakers **Usage Example**: ```python from mcp_server.utils.circuit_breaker import CircuitBreaker, CircuitBreakerConfig # Configure circuit breaker config = CircuitBreakerConfig( failure_threshold=5, # Open after 5 failures success_threshold=2, # Close after 2 successes in half-open timeout_seconds=60.0, # Try recovery after 60s ) breaker = CircuitBreaker("external_api", config) # Use circuit breaker try: result = await breaker.call(external_api_function, arg1, arg2) except CircuitBreakerError: # Circuit is open, use fallback result = get_cached_result() # Check metrics metrics = breaker.get_metrics() print(f"State: {metrics['state']}, Hit rate: {metrics['failure_count']}") ``` **Integration**: Enhanced Neo4j client automatically uses circuit breakers to protect database operations. ### 2. Neo4j Index Management (`mcp_server/database/indexes.py`) **Purpose**: Optimize database query performance with strategic indexes. **Features**: - Indexes for audit events, execution results, user management - Uniqueness constraints for data integrity - Idempotent operations (IF NOT EXISTS) - Index listing and management **Indexes Created**: ```cypher -- Audit event indexes CREATE INDEX audit_event_type_timestamp FOR (e:AuditEvent) ON (e.event_type, e.timestamp) CREATE INDEX audit_user_id FOR (e:AuditEvent) ON (e.user_id) CREATE INDEX audit_request_id FOR (e:AuditEvent) ON (e.request_id) -- Execution result indexes CREATE INDEX lint_result_hash FOR (n:LintResult) ON (n.code_hash) CREATE INDEX execution_result_timestamp FOR (n:ExecutionResult) ON (n.timestamp) CREATE INDEX test_result_timestamp FOR (n:TestResult) ON (n.timestamp) -- User management indexes CREATE INDEX user_id FOR (u:User) ON (u.user_id) CREATE INDEX role_name FOR (r:Role) ON (r.name) ``` **Usage Example**: ```python from mcp_server.database import IndexManager, Neo4jClient client = Neo4jClient(uri, user, password, database) index_manager = IndexManager(client) # Create all indexes results = await index_manager.create_all_indexes() print(f"Created {sum(results.values())} indexes") # Create constraints constraints = await index_manager.create_constraints() print(f"Created {sum(constraints.values())} constraints") # List existing indexes indexes = await index_manager.list_indexes() for idx in indexes: print(f"Index: {idx['name']}, Type: {idx['type']}") ``` ### 3. Enhanced Input Validation (`mcp_server/utils/validation.py`) **Purpose**: Comprehensive security-focused input validation. **New Validators**: - `ensure_safe_python_code()`: Detect dangerous patterns (eval, exec, __import__, etc.) - `ensure_safe_file_path()`: Prevent path traversal and absolute paths - `ensure_within_limits()`: Validate numeric bounds - `ensure_dict_structure()`: Validate dictionary shape - `sanitize_string()`: Remove control characters **Usage Example**: ```python from mcp_server.utils.validation import ( ensure_safe_python_code, ensure_safe_file_path, ensure_within_limits, CodeValidationError, ) # Validate code for security try: ensure_safe_python_code(user_code, strict=True) except CodeValidationError as e: return {"error": str(e)} # Validate file paths try: ensure_safe_file_path("path/to/file.txt") except PayloadValidationError as e: return {"error": "Invalid path"} # Validate numeric bounds ensure_within_limits(timeout, min_value=1, max_value=300, field="timeout") ``` **Security Patterns Detected**: - `eval()`, `exec()`, `compile()` - `__import__()` for dynamic imports - File operations with write mode - `os.system()`, `subprocess` module - Network imports in strict mode (socket, urllib, requests, etc.) ### 4. High-Performance Caching (`mcp_server/utils/cache.py`) **Purpose**: In-memory cache with TTL and LRU eviction for improved performance. **Features**: - TTL-based expiration - LRU eviction when max size reached - Comprehensive metrics (hit rate, timing) - Thread-safe async operations - Decorator support for easy function caching - Background maintenance with CacheWarmer **Usage Example**: ```python from mcp_server.utils.cache import InMemoryCache, CacheWarmer # Initialize cache cache = InMemoryCache(max_size=1000, default_ttl=3600.0) # Manual caching await cache.set("user:123", user_data, ttl=600) cached_user = await cache.get("user:123") # Decorator-based caching @cache.cached(ttl=300) async def expensive_query(user_id: str): return await database.query(user_id) # Background maintenance warmer = CacheWarmer(cache, cleanup_interval=300) await warmer.start() # Get statistics stats = cache.get_stats() print(f"Hit rate: {stats['metrics']['hit_rate']:.2%}") print(f"Cache size: {stats['size']}/{stats['max_size']}") ``` **Metrics Available**: - Hit/miss counts and rates - Average get/set times - Eviction counts - Cache utilization ### 5. Prometheus Metrics Export (`mcp_server/prometheus.py`) **Purpose**: Export metrics in Prometheus format for monitoring and alerting. **Metrics Exported**: **Process Metrics**: - `ultimate_mcp_process_uptime_seconds` - `ultimate_mcp_process_start_time_seconds` **HTTP Metrics**: - `ultimate_mcp_http_requests_total{status="total|successful|failed"}` - `ultimate_mcp_http_request_duration_seconds` - `ultimate_mcp_http_requests_rate` **Execution Metrics**: - `ultimate_mcp_code_executions_total{status="total|successful|failed"}` - `ultimate_mcp_code_execution_duration_seconds` - `ultimate_mcp_executions_by_language{language="python|javascript|bash"}` **Cache Metrics**: - `ultimate_mcp_cache_size` - `ultimate_mcp_cache_utilization` - `ultimate_mcp_cache_operations_total{operation="hit|miss|eviction"}` - `ultimate_mcp_cache_hit_rate` **Circuit Breaker Metrics**: - `ultimate_mcp_circuit_breaker_state{breaker="name"}` (0=closed, 1=open, 2=half_open) - `ultimate_mcp_circuit_breaker_calls_total{breaker="name",status="..."}` **System Metrics**: - `ultimate_mcp_cpu_usage_percent` - `ultimate_mcp_memory_usage_percent` - `ultimate_mcp_load_average{period="1m|5m|15m"}` **Usage Example**: ```python from mcp_server.prometheus import PrometheusExporter exporter = PrometheusExporter( metrics_collector=metrics_collector, cache=cache, circuit_breakers=circuit_breaker_registry, ) # Generate Prometheus metrics metrics_text = await exporter.generate_metrics() # Serve on /metrics endpoint @app.get("/metrics") async def metrics_endpoint(): return Response( content=await exporter.generate_metrics(), media_type="text/plain; version=0.0.4", ) ``` ### 6. Enhanced Neo4j Client (`mcp_server/database/neo4j_client_enhanced.py`) **Improvements**: - Circuit breaker integration (optional, enabled by default) - Enhanced logging for retry attempts - Metrics exposure via `get_circuit_breaker_metrics()` - Backward compatible with existing code **Usage Example**: ```python from mcp_server.database import EnhancedNeo4jClient # Create client with circuit breaker client = EnhancedNeo4jClient( uri=neo4j_uri, user=neo4j_user, password=neo4j_password, database=neo4j_database, max_retries=3, initial_backoff_seconds=0.2, enable_circuit_breaker=True, # Default ) # Use as before - circuit breaker is transparent results = await client.execute_read_with_retry(query, params) # Get circuit breaker metrics breaker_metrics = client.get_circuit_breaker_metrics() if breaker_metrics: print(f"Circuit state: {breaker_metrics['state']}") ``` ## Integration Guide ### Step 1: Initialize Components ```python from mcp_server.database import EnhancedNeo4jClient, IndexManager from mcp_server.utils import InMemoryCache, CacheWarmer, CircuitBreakerRegistry from mcp_server.monitoring import MetricsCollector, HealthChecker from mcp_server.prometheus import PrometheusExporter # Database neo4j_client = EnhancedNeo4jClient(uri, user, password, database) await neo4j_client.connect() # Create indexes index_manager = IndexManager(neo4j_client) await index_manager.create_all_indexes() await index_manager.create_constraints() # Caching cache = InMemoryCache(max_size=1000, default_ttl=3600) cache_warmer = CacheWarmer(cache, cleanup_interval=300) await cache_warmer.start() # Monitoring metrics_collector = MetricsCollector() circuit_breakers = CircuitBreakerRegistry() # Prometheus prometheus = PrometheusExporter( metrics_collector=metrics_collector, cache=cache, circuit_breakers=circuit_breakers, ) ``` ### Step 2: Add Metrics Endpoint ```python from fastapi import FastAPI, Response app = FastAPI() @app.get("/metrics") async def metrics(): """Prometheus metrics endpoint.""" content = await prometheus.generate_metrics() return Response(content=content, media_type="text/plain; version=0.0.4") ``` ### Step 3: Configure Prometheus Scraping ```yaml # prometheus.yml scrape_configs: - job_name: 'ultimate_mcp' scrape_interval: 15s static_configs: - targets: ['localhost:8000'] metrics_path: '/metrics' ``` ### Step 4: Create Grafana Dashboard Import the provided dashboard JSON or create panels for: - Request rate and latency (HTTP metrics) - Code execution success rate and duration - Cache hit rate and utilization - Circuit breaker states - System resource usage (CPU, memory) ## Testing All new features include comprehensive unit tests: - **Circuit Breaker**: 15 tests covering all states and transitions - **Index Manager**: 12 tests covering CRUD and error handling - **Input Validation**: 35 tests covering security and bounds checking - **Caching Layer**: 25 tests covering LRU, TTL, metrics, decorators - **Prometheus**: 18 tests covering all metric types Run tests: ```bash cd backend source .venv/bin/activate pytest tests/test_circuit_breaker.py -v pytest tests/test_indexes.py -v pytest tests/test_validation.py -v pytest tests/test_cache.py -v pytest tests/test_prometheus.py -v ``` ## Performance Impact ### Caching Layer - **Cache hits**: ~1-2μs latency (in-memory) - **Cache misses**: Original operation latency + ~5-10μs overhead - **Memory**: ~1KB per cached entry (varies by data size) ### Circuit Breaker - **Overhead when closed**: ~10-20μs per operation - **Overhead when open**: ~1-2μs (immediate rejection) - **Memory**: ~500 bytes per breaker + metrics ### Indexes - **Query speedup**: 10-100x for indexed fields - **Write overhead**: ~5-10% slower inserts (maintaining indexes) - **Disk space**: ~10-20% increase (index storage) ## Security Considerations 1. **Input Validation**: All user inputs should pass through validation 2. **Circuit Breakers**: Set appropriate thresholds to balance protection and availability 3. **Cache**: Sensitive data should use short TTLs or skip caching 4. **Metrics**: Ensure /metrics endpoint has appropriate access controls in production ## Troubleshooting ### Circuit Breaker Issues ```python # Check breaker state metrics = breaker.get_metrics() print(f"State: {metrics['state']}, Failures: {metrics['failed_calls']}") # Manually reset if needed await breaker.reset() ``` ### Cache Issues ```python # Check cache stats stats = cache.get_stats() if stats['metrics']['hit_rate'] < 0.5: print("Low hit rate - review cache TTL and key generation") # Clear cache if needed await cache.clear() ``` ### Index Issues ```python # List indexes to verify creation indexes = await index_manager.list_indexes() for idx in indexes: print(f"{idx['name']}: {idx['state']}") ``` ## Future Enhancements Planned improvements documented in `docs/ENTERPRISE_EVALUATION.md`: - Distributed caching with Redis - OpenTelemetry distributed tracing - Advanced rate limiting with token bucket - Container-based code execution sandboxing - Automated dependency vulnerability scanning

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Senpai-Sama7/Ultimate_MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server