Skip to main content
Glama

NexusMind

๐Ÿง  NexusMind

โ•”โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•— โ•‘ โ•‘ โ•‘ ๐Ÿง  NexusMind ๐Ÿง  โ•‘ โ•‘ โ•‘ โ•‘ Intelligent Scientific โ•‘ โ•‘ Reasoning through โ•‘ โ•‘ Graph-of-Thoughts โ•‘ โ•‘ โ•‘ โ•šโ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•

Intelligent Scientific Reasoning through Graph-of-Thoughts

Version Python License Docker FastAPI NetworkX Last Updated

๐Ÿ” Overview

NexusMind leverages graph structures to perform sophisticated scientific reasoning. It implements the Model Context Protocol (MCP) to integrate with AI applications like Claude Desktop, providing an Advanced Scientific Reasoning Graph-of-Thoughts (ASR-GoT) framework designed for complex research tasks.

Key highlights:

  • Process complex scientific queries using graph-based reasoning

  • Dynamic confidence scoring with multi-dimensional evaluations

  • Built with modern Python and FastAPI for high performance

  • Dockerized for easy deployment

  • Modular design for extensibility and customization

  • Integration with Claude Desktop via MCP protocol

๐ŸŒŸ Key Features

8-Stage Reasoning Pipeline

graph TD A[๐ŸŒฑ Stage 1: Initialization] --> B[๐Ÿงฉ Stage 2: Decomposition] B --> C[๐Ÿ”ฌ Stage 3: Hypothesis/Planning] C --> D[๐Ÿ“Š Stage 4: Evidence Integration] D --> E[โœ‚๏ธ Stage 5: Pruning/Merging] E --> F[๐Ÿ” Stage 6: Subgraph Extraction] F --> G[๐Ÿ“ Stage 7: Composition] G --> H[๐Ÿค” Stage 8: Reflection] A1[Create root node<br/>Set initial confidence<br/>Define graph structure] --> A B1[Break into dimensions<br/>Identify components<br/>Create dimensional nodes] --> B C1[Generate hypotheses<br/>Create reasoning strategy<br/>Set falsification criteria] --> C D1[Gather evidence<br/>Link to hypotheses<br/>Update confidence scores] --> D E1[Remove low-value elements<br/>Consolidate similar nodes<br/>Optimize structure] --> E F1[Identify relevant portions<br/>Focus on high-value paths<br/>Create targeted subgraphs] --> F G1[Synthesize findings<br/>Create coherent insights<br/>Generate comprehensive answer] --> G H1[Evaluate reasoning quality<br/>Identify improvements<br/>Final confidence assessment] --> H style A fill:#e1f5fe style B fill:#f3e5f5 style C fill:#e8f5e8 style D fill:#fff3e0 style E fill:#ffebee style F fill:#f1f8e9 style G fill:#e3f2fd style H fill:#fce4ec

The core reasoning process follows a sophisticated 8-stage pipeline:

  1. ๐ŸŒฑ Initialization

    • Creates root node from query with multi-dimensional confidence vector

    • Establishes initial graph structure with proper metadata

    • Sets baseline confidence across empirical, theoretical, methodological, and consensus dimensions

  2. ๐Ÿงฉ Decomposition

    • Breaks query into key dimensions: Scope, Objectives, Constraints, Data Needs, Use Cases

    • Identifies potential biases and knowledge gaps from the outset

    • Creates dimensional nodes with initial confidence assessments

  3. ๐Ÿ”ฌ Hypothesis/Planning

    • Generates 3-5 hypotheses per dimension with explicit falsification criteria

    • Creates detailed execution plans for each hypothesis

    • Tags with disciplinary provenance and impact estimates

  4. ๐Ÿ“Š Evidence Integration

    • Iteratively selects hypotheses based on confidence-to-cost ratio and impact

    • Gathers and links evidence using typed edges (causal, temporal, correlative)

    • Updates confidence vectors using Bayesian methods with statistical power assessment

  5. โœ‚๏ธ Pruning/Merging

    • Removes nodes with low confidence and impact scores

    • Consolidates semantically similar nodes

    • Optimizes graph structure while preserving critical relationships

  6. ๐Ÿ” Subgraph Extraction

    • Identifies high-value subgraphs based on multiple criteria

    • Focuses on nodes with high confidence and impact scores

    • Extracts patterns relevant to the original query

  7. ๐Ÿ“ Composition

    • Synthesizes findings into coherent narrative

    • Annotates claims with node IDs and edge types

    • Provides comprehensive answers with proper citations

  8. ๐Ÿค” Reflection

    • Performs comprehensive quality audit

    • Evaluates coverage, bias detection, and methodological rigor

    • Provides final confidence assessment and improvement recommendations

Advanced Technical Capabilities

Core Features:

  • ๐Ÿง  Graph Knowledge Representation: Uses networkx to model complex relationships with hyperedges and multi-layer networks

  • ๐Ÿ”„ Dynamic Confidence Vectors: Four-dimensional confidence assessment (empirical support, theoretical basis, methodological rigor, consensus alignment)

  • ๐ŸŒ Interdisciplinary Bridge Nodes: Automatically connects insights across different research domains

  • ๐Ÿ”— Advanced Edge Types: Supports causal, temporal, correlative, and custom relationship types

  • ๐Ÿ“Š Statistical Rigor: Integrated power analysis and effect size estimation

  • ๐ŸŽฏ Impact-Driven Prioritization: Focuses on high-impact research directions

  • ๐Ÿ”Œ MCP Server: Seamless Claude Desktop integration with Model Context Protocol

  • โšก High-Performance API: Modern FastAPI implementation with async support

๐Ÿ› ๏ธ Technology Stack

๐Ÿ“‚ Project Structure

NexusMind/ โ”œโ”€โ”€ ๐Ÿ“ config/ # Configuration files โ”‚ โ”œโ”€โ”€ settings.yaml # Application settings โ”‚ โ”œโ”€โ”€ claude_mcp_config.json # Claude MCP integration config โ”‚ โ””โ”€โ”€ logging.yaml # Logging configuration โ”‚ โ”œโ”€โ”€ ๐Ÿ“ src/asr_got_reimagined/ # Main source code โ”‚ โ”œโ”€โ”€ ๐Ÿ“ api/ # API layer โ”‚ โ”‚ โ”œโ”€โ”€ ๐Ÿ“ routes/ # API route definitions โ”‚ โ”‚ โ”‚ โ”œโ”€โ”€ mcp.py # MCP protocol endpoints โ”‚ โ”‚ โ”‚ โ”œโ”€โ”€ health.py # Health check endpoints โ”‚ โ”‚ โ”‚ โ””โ”€โ”€ graph.py # Graph query endpoints โ”‚ โ”‚ โ”œโ”€โ”€ schemas.py # API request/response schemas โ”‚ โ”‚ โ””โ”€โ”€ middleware.py # API middleware โ”‚ โ”‚ โ”‚ โ”œโ”€โ”€ ๐Ÿ“ domain/ # Core business logic โ”‚ โ”‚ โ”œโ”€โ”€ ๐Ÿ“ models/ # Domain models โ”‚ โ”‚ โ”‚ โ”œโ”€โ”€ common.py # Common types and enums โ”‚ โ”‚ โ”‚ โ”œโ”€โ”€ graph_elements.py # Node, Edge, Hyperedge models โ”‚ โ”‚ โ”‚ โ”œโ”€โ”€ graph_state.py # Graph state management โ”‚ โ”‚ โ”‚ โ”œโ”€โ”€ confidence.py # Confidence vector models โ”‚ โ”‚ โ”‚ โ””โ”€โ”€ metadata.py # Metadata schemas โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ”œโ”€โ”€ ๐Ÿ“ services/ # Business services โ”‚ โ”‚ โ”‚ โ”œโ”€โ”€ got_processor.py # Main GoT processing service โ”‚ โ”‚ โ”‚ โ”œโ”€โ”€ evidence_service.py # Evidence gathering and assessment โ”‚ โ”‚ โ”‚ โ”œโ”€โ”€ confidence_service.py # Confidence calculation service โ”‚ โ”‚ โ”‚ โ”œโ”€โ”€ graph_service.py # Graph manipulation service โ”‚ โ”‚ โ”‚ โ””โ”€โ”€ mcp_service.py # MCP protocol service โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ”œโ”€โ”€ ๐Ÿ“ stages/ # 8-Stage pipeline implementation โ”‚ โ”‚ โ”‚ โ”œโ”€โ”€ base_stage.py # Abstract base stage โ”‚ โ”‚ โ”‚ โ”œโ”€โ”€ stage_1_initialization.py # Stage 1: Graph initialization โ”‚ โ”‚ โ”‚ โ”œโ”€โ”€ stage_2_decomposition.py # Stage 2: Query decomposition โ”‚ โ”‚ โ”‚ โ”œโ”€โ”€ stage_3_hypothesis.py # Stage 3: Hypothesis generation โ”‚ โ”‚ โ”‚ โ”œโ”€โ”€ stage_4_evidence.py # Stage 4: Evidence integration โ”‚ โ”‚ โ”‚ โ”œโ”€โ”€ stage_5_pruning.py # Stage 5: Pruning and merging โ”‚ โ”‚ โ”‚ โ”œโ”€โ”€ stage_6_extraction.py # Stage 6: Subgraph extraction โ”‚ โ”‚ โ”‚ โ”œโ”€โ”€ stage_7_composition.py # Stage 7: Answer composition โ”‚ โ”‚ โ”‚ โ””โ”€โ”€ stage_8_reflection.py # Stage 8: Quality reflection โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ””โ”€โ”€ ๐Ÿ“ utils/ # Utility functions โ”‚ โ”‚ โ”œโ”€โ”€ graph_utils.py # Graph manipulation utilities โ”‚ โ”‚ โ”œโ”€โ”€ confidence_utils.py # Confidence calculation utilities โ”‚ โ”‚ โ”œโ”€โ”€ statistical_utils.py # Statistical analysis utilities โ”‚ โ”‚ โ”œโ”€โ”€ bias_detection.py # Bias detection algorithms โ”‚ โ”‚ โ””โ”€โ”€ temporal_analysis.py # Temporal pattern analysis โ”‚ โ”‚ โ”‚ โ”œโ”€โ”€ ๐Ÿ“ infrastructure/ # Infrastructure layer โ”‚ โ”‚ โ”œโ”€โ”€ ๐Ÿ“ database/ # Database integration โ”‚ โ”‚ โ”œโ”€โ”€ ๐Ÿ“ cache/ # Caching layer โ”‚ โ”‚ โ””โ”€โ”€ ๐Ÿ“ external/ # External service integrations โ”‚ โ”‚ โ”‚ โ”œโ”€โ”€ main.py # Application entry point โ”‚ โ””โ”€โ”€ app_setup.py # Application setup and configuration โ”‚ โ”œโ”€โ”€ ๐Ÿ“ tests/ # Test suite โ”‚ โ”œโ”€โ”€ ๐Ÿ“ unit/ # Unit tests โ”‚ โ”‚ โ”œโ”€โ”€ ๐Ÿ“ stages/ # Stage-specific tests โ”‚ โ”‚ โ”œโ”€โ”€ ๐Ÿ“ services/ # Service tests โ”‚ โ”‚ โ””โ”€โ”€ ๐Ÿ“ models/ # Model tests โ”‚ โ”œโ”€โ”€ ๐Ÿ“ integration/ # Integration tests โ”‚ โ””โ”€โ”€ ๐Ÿ“ fixtures/ # Test fixtures and data โ”‚ โ”œโ”€โ”€ ๐Ÿ“ scripts/ # Utility scripts โ”‚ โ”œโ”€โ”€ setup_dev.py # Development setup โ”‚ โ”œโ”€โ”€ add_type_hints.py # Type hint utilities โ”‚ โ””โ”€โ”€ deployment/ # Deployment scripts โ”‚ โ”œโ”€โ”€ ๐Ÿ“ docs/ # Documentation โ”‚ โ”œโ”€โ”€ api/ # API documentation โ”‚ โ”œโ”€โ”€ architecture/ # Architecture diagrams โ”‚ โ””โ”€โ”€ examples/ # Usage examples โ”‚ โ”œโ”€โ”€ ๐Ÿ“ static/ # Static assets โ”‚ โ””โ”€โ”€ nexusmind-logo.png # Application logo โ”‚ โ”œโ”€โ”€ ๐Ÿ“„ Docker Files & Config โ”œโ”€โ”€ Dockerfile # Docker container definition โ”œโ”€โ”€ docker-compose.yml # Multi-container setup โ”œโ”€โ”€ .dockerignore # Docker ignore patterns โ”‚ โ”œโ”€โ”€ ๐Ÿ“„ Configuration Files โ”œโ”€โ”€ pyproject.toml # Python project configuration โ”œโ”€โ”€ poetry.lock # Dependency lock file โ”œโ”€โ”€ mypy.ini # Type checking configuration โ”œโ”€โ”€ pyrightconfig.json # Python type checker config โ”œโ”€โ”€ .pre-commit-config.yaml # Pre-commit hooks โ”œโ”€โ”€ .gitignore # Git ignore patterns โ”‚ โ””โ”€โ”€ ๐Ÿ“„ Documentation โ”œโ”€โ”€ README.md # This file โ”œโ”€โ”€ CHANGELOG.md # Version history โ”œโ”€โ”€ LICENSE # Apache 2.0 license โ””โ”€โ”€ CONTRIBUTING.md # Contribution guidelines

๐Ÿš€ Getting Started

Prerequisites

  • Python 3.13+ (Docker image uses Python 3.13.3-slim-bookworm)

  • Poetry: For dependency management

  • Docker and Docker Compose: For containerized deployment

Installation and Setup (Local Development)

  1. Clone the repository:

    git clone https://github.com/SaptaDey/NexusMind.git cd NexusMind
  2. Install dependencies using Poetry:

    poetry install

    This creates a virtual environment and installs all necessary packages specified in pyproject.toml.

  3. Activate the virtual environment:

    poetry shell
  4. Configure the application:

    # Copy example configuration cp config/settings.example.yaml config/settings.yaml # Edit configuration as needed vim config/settings.yaml
  5. Set up environment variables (optional):

    # Create .env file for sensitive configuration echo "LOG_LEVEL=DEBUG" > .env echo "API_HOST=0.0.0.0" >> .env echo "API_PORT=8000" >> .env
  6. Run the development server:

    python src/asr_got_reimagined/main.py

    Alternatively, for more control:

    uvicorn asr_got_reimagined.main:app --reload --host 0.0.0.0 --port 8000

    The API will be available at http://localhost:8000.

Docker Deployment

graph TB subgraph "Development Environment" A[๐Ÿ‘จโ€๐Ÿ’ป Developer] --> B[๐Ÿณ Docker Compose] end subgraph "Container Orchestration" B --> C[๐Ÿ“ฆ NexusMind Container] B --> D[๐Ÿ“Š Monitoring Container] B --> E[๐Ÿ—„๏ธ Database Container] end subgraph "NexusMind Application" C --> F[โšก FastAPI Server] F --> G[๐Ÿง  ASR-GoT Engine] F --> H[๐Ÿ”Œ MCP Protocol] end subgraph "External Integrations" H --> I[๐Ÿค– Claude Desktop] H --> J[๐Ÿ”— Other AI Clients] end style A fill:#e1f5fe style B fill:#f3e5f5 style C fill:#e8f5e8 style F fill:#fff3e0 style G fill:#ffebee style H fill:#f1f8e9
  1. Quick Start with Docker Compose:

    # Build and run all services docker-compose up --build # For detached mode (background) docker-compose up --build -d # View logs docker-compose logs -f nexusmind
  2. Individual Docker Container:

    # Build the image docker build -t nexusmind:latest . # Run the container docker run -p 8000:8000 -v $(pwd)/config:/app/config nexusmind:latest
  3. Production Deployment:

    # Use production compose file docker-compose -f docker-compose.prod.yml up --build -d
  4. Access the Services:

    • API Documentation: http://localhost:8000/docs

    • Health Check: http://localhost:8000/health

    • MCP Endpoint: http://localhost:8000/mcp

๐Ÿ”Œ API Endpoints

Core Endpoints

  • MCP Protocol: POST /mcp

    { "method": "process_query", "params": { "query": "Analyze the relationship between microbiome diversity and cancer progression", "confidence_threshold": 0.7, "max_stages": 8 } }
  • Health Check: GET /health

    { "status": "healthy", "version": "0.1.0", "timestamp": "2024-05-23T10:30:00Z" }

Advanced Endpoints

  • Graph Query: POST /api/v1/graph/query

    { "query": "Research question or hypothesis", "parameters": { "disciplines": ["immunology", "oncology"], "confidence_threshold": 0.6, "include_temporal_analysis": true, "enable_bias_detection": true } }
  • Graph State: GET /api/v1/graph/{session_id}

    • Retrieve current state of a reasoning graph

    • Includes confidence scores, node relationships, and metadata

  • Analytics: GET /api/v1/analytics/{session_id}

    • Get comprehensive metrics about the reasoning process

    • Includes performance stats, confidence trends, and quality measures

  • Subgraph Extraction: POST /api/v1/graph/{session_id}/extract

    { "criteria": { "min_confidence": 0.7, "node_types": ["hypothesis", "evidence"], "include_causal_chains": true } }

๐Ÿงช Testing & Quality Assurance

Development Commands

# Run full test suite with coverage poetry run pytest --cov=src --cov-report=html --cov-report=term # Run specific test categories poetry run pytest tests/unit/stages/ # Stage-specific tests poetry run pytest tests/integration/ # Integration tests poetry run pytest -k "test_confidence" # Tests matching pattern # Type checking and linting poetry run mypy src/ --strict # Strict type checking poetry run ruff check . --fix # Auto-fix linting issues poetry run ruff format . # Format code # Pre-commit hooks (recommended) poetry run pre-commit install # Install hooks poetry run pre-commit run --all-files # Run all hooks

Quality Metrics

  • Type Safety:

    • Fully typed codebase with strict mypy configuration

    • Configured with mypy.ini and pyrightconfig.json

    • Fix logger type issues: python scripts/add_type_hints.py

  • Code Quality:

    • 95%+ test coverage target

    • Automated formatting with Ruff

    • Pre-commit hooks for consistent code quality

    • Comprehensive integration tests for the 8-stage pipeline

๐Ÿ”ง Configuration

Application Settings (config/settings.yaml)

# Core application settings app: name: "NexusMind" version: "0.1.0" debug: false log_level: "INFO" # API configuration api: host: "0.0.0.0" port: 8000 cors_origins: ["*"] # ASR-GoT Framework settings asr_got: max_stages: 8 default_confidence_threshold: 0.6 enable_bias_detection: true enable_temporal_analysis: true max_hypotheses_per_dimension: 5 # Graph settings graph: max_nodes: 10000 enable_hyperedges: true enable_multi_layer: true temporal_decay_factor: 0.1

MCP Configuration (config/claude_mcp_config.json)

{ "name": "nexusmind", "description": "Advanced Scientific Reasoning with Graph-of-Thoughts", "version": "0.1.0", "endpoints": { "mcp": "http://localhost:8000/mcp" }, "capabilities": [ "scientific_reasoning", "graph_analysis", "confidence_assessment", "bias_detection" ] }

๐Ÿค Contributing

We welcome contributions! Please see our Contributing Guidelines for details.

Development Setup

  1. Fork the repository

  2. Create a feature branch: git checkout -b feature/amazing-feature

  3. Install development dependencies: poetry install --with dev

  4. Make your changes and add tests

  5. Run the test suite: poetry run pytest

  6. Submit a pull request

Code Style

  • Follow PEP 8 style guidelines

  • Use type hints for all functions and methods

  • Write comprehensive docstrings

  • Maintain test coverage above 95%

๐Ÿ“š Documentation

๐Ÿ“„ License

This project is licensed under the Apache License 2.0 - see the LICENSE file for details.

๐Ÿ™ Acknowledgments

  • NetworkX community for graph analysis capabilities

  • FastAPI team for the excellent web framework

  • Pydantic for robust data validation

  • The scientific research community for inspiration and feedback


Related MCP Servers

  • A
    security
    A
    license
    A
    quality
    A sophisticated MCP server that provides a multi-dimensional, adaptive reasoning framework for AI assistants, replacing linear reasoning with a graph-based architecture for more nuanced cognitive processes.
    Last updated -
    1
    505
    27
    MIT License
    • Apple
    • Linux
  • -
    security
    F
    license
    -
    quality
    An advanced MCP server that implements sophisticated sequential thinking using a coordinated team of specialized AI agents (Planner, Researcher, Analyzer, Critic, Synthesizer) to deeply analyze problems and provide high-quality, structured reasoning.
    Last updated -
    1
    253
    • Linux
    • Apple
  • -
    security
    F
    license
    -
    quality
    An OpenAI API-based MCP server that provides deep thinking and analysis capabilities, integrating with AI editor models to deliver comprehensive insights and practical solutions.
    Last updated -
  • A
    security
    A
    license
    A
    quality
    An MCP server that provides a "think" tool enabling structured reasoning for AI agents, allowing them to pause and record explicit thoughts during complex tasks or multi-step tool use.
    Last updated -
    1
    75
    MIT License

View all related MCP servers

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/SaptaDey/NexusMind'

If you have feedback or need assistance with the MCP directory API, please join our Discord server