Skip to main content
Glama

Kedro RAG MCP

Prerequisites

  • Python 3.8+

  • Claude Desktop app (Get from website)

Step 1: Clone and Set Up the Project

# Clone your repository git clone https://github.com/your-username/kedro-mcp-rag.git cd kedro-mcp-rag # Create a virtual environment (using conda) conda create -n kedro-rag python=3.12 -y conda activate kedro-rag # Or using venv python -m venv venv source venv/bin/activate

Step 2: Install Dependencies

# Install the RAG system dependencies pip install -r requirements.txt

Step 3: Set Up Kedro Documentation with llms.txt

3.1 Clone Kedro Repository (if not already done)

3.2 Update mkdocs.yml Configuration (if not already done)

The Kedro mkdocs.yml should have the llmstxt plugin configured:

plugins: # ... other plugins ... - llmstxt: markdown_description: | Kedro is an open-source Python framework for creating reproducible, maintainable, and modular data science code. # ... rest of description ... full_output: llms-full.txt sections: # ... sections configuration ...

3.3 Serve the Documentation

# In the kedro directory make serve-docs

This will:

  • Start the documentation server at http://127.0.0.1:8000

  • Generate the llms-full.txt file at http://127.0.0.1:8000/en/stable/llms-full.txt

Important: Keep this server running while using the RAG system!

Step 4: Configure Claude Desktop

4.1 Locate Claude Desktop Config

The config file location varies by OS:

  • macOS: ~/Library/Application Support/Claude/claude_desktop_config.json

4.2 Update the Configuration

Edit claude_desktop_config.json and add your MCP server configuration:

{ "mcpServers": { "kedro-assistant": { "command": "/path/to/your/python", "args": ["/path/to/kedro-mcp-rag/kedro_mcp.py"], "env": { "PYTHONPATH": "/path/to/kedro-mcp-rag/" } } } }

Replace the paths with your actual paths. For example:

  • macOS with Anaconda:

    { "mcpServers": { "kedro-assistant": { "command": "/Users/YourName/anaconda3/envs/kedro-rag/bin/python", "args": ["/Users/YourName/GitHub/kedro-mcp-rag/kedro_mcp.py"], "env": { "PYTHONPATH": "/Users/YourName/GitHub/kedro-mcp-rag/" } } } }

To find the correct Python path:

# With conda environment activated which python # macOS/Linux # Or conda info --envs # Shows all conda environments

Step 5: Test the Setup

5.1 Restart Claude Desktop

  1. Completely quit Claude Desktop

  2. Restart Claude Desktop

  3. The MCP tools should now be available

  4. Ask it a kedro related question and it will use the tools to build knowledge DB at /tmp/kedro_knowledge_db if it doesn't already exist.

  5. If you see the following in Claude Desktop settings then MCP is up and running with the RAG.

-
security - not tested
F
license - not found
-
quality - not tested

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/SajidAlamQB/kedro-mcp-rag'

If you have feedback or need assistance with the MCP directory API, please join our Discord server