Skip to main content
Glama

MCP Claude Code

by SDGLBL
batch_tool.py12.1 kB
"""Batch tool implementation for MCP Claude Code. This module provides the BatchTool that allows for executing multiple tools in parallel or serial depending on their characteristics. """ import asyncio from typing import Annotated, Any, TypedDict, Unpack, final, override from fastmcp import Context as MCPContext from fastmcp import FastMCP from fastmcp.server.dependencies import get_context from pydantic import Field from mcp_claude_code.tools.common.base import BaseTool from mcp_claude_code.tools.common.context import create_tool_context class InvocationItem(TypedDict): """A single tool invocation item. Attributes: tool_name: The name of the tool to invoke input: The input to pass to the tool """ tool_name: Annotated[ str, Field( description="The name of the tool to invoke", min_length=1, ), ] input: Annotated[ dict[str, Any], Field( description="The input to pass to the tool", ), ] Description = Annotated[ str, Field( description="A short (3-5 word) description of the batch operation", min_length=1, ), ] Invocations = Annotated[ list[InvocationItem], Field( description="The list of tool invocations to execute (required -- you MUST provide at least one tool invocation)", min_length=1, ), ] class BatchToolParams(TypedDict): """Parameters for the BatchTool. Attributes: description: A short (3-5 word) description of the batch operation invocations: The list of tool invocations to execute (required -- you MUST provide at least one tool invocation) """ description: Description invocations: Invocations @final class BatchTool(BaseTool): """Tool for executing multiple tools in a single request. Executes a list of tool invocations in parallel when possible, or otherwise serially. Returns the collected results from all invocations. """ @property @override def name(self) -> str: """Get the tool name. Returns: Tool name """ return "batch" @property @override def description(self) -> str: """Get the tool description. Returns: Tool description """ return """Batch execution tool that runs multiple tool invocations in a single request. Tools are executed in parallel when possible, and otherwise serially. Takes a list of tool invocations (tool_name and input pairs). Returns the collected results from all invocations. Use this tool when you need to run multiple independent tool operations at once -- it is awesome for speeding up your workflow, reducing both context usage and latency. Each tool will respect its own permissions and validation rules. The tool's outputs are NOT shown to the user; to answer the user's query, you MUST send a message with the results after the tool call completes, otherwise the user will not see the results. <batch_example> When dispatching multiple agents to find necessary information. batch( description="Update import statements across modules", invocations=[ {tool_name: "dispatch_agent", input: {prompt: "Search for all instances of 'logger' configuration in /app/config directory"}}, {tool_name: "dispatch_agent", input: {prompt: "Find all test files that reference 'UserService' in /app/tests"}}, ] ) Common scenarios for effective batching: 1. Reading multiple related files in one operation 2. Performing a series of simple mechanical changes 3. Running multiple diagnostic commands 4. Dispatch multiple agents to complete the task To make a batch call, provide the following: 1. description: A short (3-5 word) description of the batch operation 2. invocations: List of invocation [{"tool_name": "...", "input": "..."}], tool_name: The name of the tool to invoke,newText: The input to pass to the tool Available tools in batch call: Tool: dispatch_agent,read,directory_tree,grep,grep_ast,run_command,notebook_read Not available: think,write,edit,multi_edit,notebook_edit """ def __init__(self, tools: dict[str, BaseTool]) -> None: """Initialize the batch tool. Args: tools: Dictionary mapping tool names to tool instances """ self.tools = tools @override async def call( self, ctx: MCPContext, **params: Unpack[BatchToolParams], ) -> str: """Execute the tool with the given parameters. Args: ctx: MCP context **params: Tool parameters Returns: Tool result """ tool_ctx = create_tool_context(ctx) tool_ctx.set_tool_info(self.name) # Extract parameters description = params.get("description") invocations: list[dict[str, Any]] = params.get("invocations", list()) # Validate required parameters if not description: await tool_ctx.error( "Parameter 'description' is required but was None or empty" ) return "Error: Parameter 'description' is required but was None or empty" if not invocations: await tool_ctx.error( "Parameter 'invocations' is required but was None or empty" ) return "Error: Parameter 'invocations' is required but was None or empty" if not isinstance(invocations, list) or len(invocations) == 0: await tool_ctx.error("Parameter 'invocations' must be a non-empty list") return "Error: Parameter 'invocations' must be a non-empty list" await tool_ctx.info( f"Executing batch operation: {description} ({len(invocations)} invocations)" ) # Execute all tool invocations in parallel tasks: list[asyncio.Future[dict[str, Any]]] = [] invocation_map: dict[ asyncio.Future[dict[str, Any]], dict[str, Any] ] = {} # Map task Future to invocation for i, invocation in enumerate(invocations): # Extract tool name and input from invocation tool_name: str = invocation.get("tool_name", "") tool_input: dict[str, Any] = invocation.get("input", {}) # Validate tool invocation if not tool_name: error_message = f"Tool name is required in invocation {i}" await tool_ctx.error(error_message) # Add direct result for this invocation tasks.append(asyncio.Future()) tasks[-1].set_result( {"invocation": invocation, "result": f"Error: {error_message}"} ) invocation_map[tasks[-1]] = invocation continue # Check if the tool exists if tool_name not in self.tools: error_message = f"Tool '{tool_name}' not found" await tool_ctx.error(error_message) # Add direct result for this invocation tasks.append(asyncio.Future()) tasks[-1].set_result( {"invocation": invocation, "result": f"Error: {error_message}"} ) invocation_map[tasks[-1]] = invocation continue # Create a task for this tool invocation try: tool = self.tools[tool_name] await tool_ctx.info(f"Creating task for tool: {tool_name}") # Create coroutine for this tool execution async def execute_tool( tool_obj: BaseTool, tool_name: str, tool_input: dict[str, Any] ): try: await tool_ctx.info(f"Executing tool: {tool_name}") result = await tool_obj.call(ctx, **tool_input) await tool_ctx.info(f"Tool '{tool_name}' execution completed") return { "invocation": {"tool_name": tool_name, "input": tool_input}, "result": result, } except Exception as e: error_message = f"Error executing tool '{tool_name}': {str(e)}" await tool_ctx.error(error_message) return { "invocation": {"tool_name": tool_name, "input": tool_input}, "result": f"Error: {error_message}", } # Schedule the task task = asyncio.create_task(execute_tool(tool, tool_name, tool_input)) tasks.append(task) invocation_map[task] = invocation except Exception as e: error_message = f"Error scheduling tool '{tool_name}': {str(e)}" await tool_ctx.error(error_message) # Add direct result for this invocation tasks.append(asyncio.Future()) tasks[-1].set_result( {"invocation": invocation, "result": f"Error: {error_message}"} ) invocation_map[tasks[-1]] = invocation # Wait for all tasks to complete await tool_ctx.info(f"Waiting for {len(tasks)} tool executions to complete") results: list[dict[str, Any]] = [] # As tasks complete, collect their results for task in asyncio.as_completed(tasks): try: result = await task results.append(result) except Exception as e: invocation = invocation_map[task] tool_name: str = invocation.get("tool_name", "unknown") error_message = f"Unexpected error in tool '{tool_name}': {str(e)}" await tool_ctx.error(error_message) results.append( {"invocation": invocation, "result": f"Error: {error_message}"} ) # Format the results formatted_results = self._format_results(results) await tool_ctx.info( f"Batch operation '{description}' completed with {len(results)} results" ) return formatted_results def _format_results(self, results: list[dict[str, dict[str, Any]]]) -> str: """Format the results from multiple tool invocations. Args: results: List of tool invocation results Returns: Formatted results string """ formatted_parts: list[str] = [] for i, result in enumerate(results): invocation: dict[str, Any] = result["invocation"] tool_name: str = invocation.get("tool_name", "unknown") # Add the result header formatted_parts.append(f"### Result {i + 1}: {tool_name}") # Add the result content - use multi-line code blocks for code outputs if "\n" in result["result"]: formatted_parts.append(f"```\n{result['result']}\n```") else: formatted_parts.append(result["result"]) # Add a separator formatted_parts.append("") return "\n".join(formatted_parts) @override def register(self, mcp_server: FastMCP) -> None: """Register this batch tool with the MCP server. Creates a wrapper function with explicitly defined parameters that match the tool's parameter schema and registers it with the MCP server. Args: mcp_server: The FastMCP server instance """ tool_self = self # Create a reference to self for use in the closure @mcp_server.tool(name=self.name, description=self.description) async def batch( ctx: MCPContext, description: Description, invocations: Invocations, ) -> str: ctx = get_context() return await tool_self.call( ctx, description=description, invocations=invocations )

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/SDGLBL/mcp-claude-code'

If you have feedback or need assistance with the MCP directory API, please join our Discord server