Skip to main content
Glama

MCP Claude Code

by SDGLBL
agent_tool.py17.2 kB
"""Agent tool implementation for MCP Claude Code. This module implements the AgentTool that allows Claude to delegate tasks to sub-agents, enabling concurrent execution of multiple operations and specialized processing. """ import json import re import time from collections.abc import Iterable from typing import Annotated, TypedDict, Unpack, final, override import litellm from fastmcp import Context as MCPContext from fastmcp import FastMCP from fastmcp.server.dependencies import get_context from openai.types.chat import ChatCompletionMessageParam, ChatCompletionToolParam from pydantic import Field from mcp_claude_code.tools.agent.prompt import ( get_allowed_agent_tools, get_default_model, get_model_parameters, get_system_prompt, ) from mcp_claude_code.tools.agent.tool_adapter import ( convert_tools_to_openai_functions, ) from mcp_claude_code.tools.common.base import BaseTool from mcp_claude_code.tools.common.batch_tool import BatchTool from mcp_claude_code.tools.common.context import ( ToolContext, create_tool_context, ) from mcp_claude_code.tools.common.permissions import PermissionManager from mcp_claude_code.tools.filesystem import get_read_only_filesystem_tools from mcp_claude_code.tools.jupyter import get_read_only_jupyter_tools Prompt = Annotated[ str, Field( description="Task for the agent to perform (must include absolute paths starting with /)", min_length=1, ), ] class AgentToolParams(TypedDict): """Parameters for the AgentTool. Attributes: prompt: Task for the agent to perform (must include absolute paths starting with /) """ prompt: Prompt @final class AgentTool(BaseTool): """Tool for delegating tasks to sub-agents. The AgentTool allows Claude to create and manage sub-agents for performing specialized tasks concurrently, such as code search, analysis, and more. """ @property @override def name(self) -> str: """Get the tool name. Returns: Tool name """ return "dispatch_agent" @property @override def description(self) -> str: """Get the tool description. Returns: Tool description """ # TODO: Add glob when it is implemented at = [t.name for t in self.available_tools] return f"""Launch a new agent that has access to the following tools: {at} When you are searching for a keyword or file and are not confident that you will find the right match in the first few tries, use the Agent tool to perform the search for you. When to use the Agent tool: - If you are searching for a keyword like \"config\" or \"logger\", or for questions like \"which file does X?\", the Agent tool is strongly recommended When NOT to use the Agent tool: - If you want to read a specific file path, use the read or glob tool instead of the Agent tool, to find the match more quickly - If you are searching for a specific class definition like \"class Foo\", use the glob tool instead, to find the match more quickly - If you are searching for code within a specific file or set of 2-3 files, use the read tool instead of the Agent tool, to find the match more quickly Usage notes: 1. Launch multiple agents concurrently whenever possible, to maximize performance; to do that, use a single message with multiple tool uses 2. When the agent is done, it will return a single message back to you. The result returned by the agent is not visible to the user. To show the user the result, you should send a text message back to the user with a concise summary of the result. 3. Each agent invocation is stateless. You will not be able to send additional messages to the agent, nor will the agent be able to communicate with you outside of its final report. Therefore, your prompt should contain a highly detailed task description for the agent to perform autonomously and you should specify exactly what information the agent should return back to you in its final and only message to you. 4. The agent's outputs should generally be trusted 5.IMPORTANT: The Agent has no awareness of your context, so you must explicitly specify absolute project/file/directory paths and detailed background information about the current task. """ def __init__( self, permission_manager: PermissionManager, model: str | None = None, api_key: str | None = None, base_url: str | None = None, max_tokens: int | None = None, max_iterations: int = 10, max_tool_uses: int = 30, ) -> None: """Initialize the agent tool. Args: permission_manager: Permission manager for access control model: Optional model name override in LiteLLM format (e.g., "openai/gpt-4o") api_key: Optional API key for the model provider base_url: Optional base URL for the model provider API endpoint max_tokens: Optional maximum tokens for model responses max_iterations: Maximum number of iterations for agent (default: 10) max_tool_uses: Maximum number of total tool uses for agent (default: 30) """ self.permission_manager = permission_manager self.model_override = model self.api_key_override = api_key self.base_url_override = base_url self.max_tokens_override = max_tokens self.max_iterations = max_iterations self.max_tool_uses = max_tool_uses self.available_tools: list[BaseTool] = [] self.available_tools.extend( get_read_only_filesystem_tools(self.permission_manager) ) self.available_tools.extend( get_read_only_jupyter_tools(self.permission_manager) ) self.available_tools.append( BatchTool({t.name: t for t in self.available_tools}) ) @override async def call( self, ctx: MCPContext, **params: Unpack[AgentToolParams], ) -> str: """Execute the tool with the given parameters. Args: ctx: MCP context **params: Tool parameters Returns: Tool execution result """ start_time = time.time() # Create tool context tool_ctx = create_tool_context(ctx) tool_ctx.set_tool_info(self.name) # Extract parameters prompt = params.get("prompt") # Check for absolute path in prompt absolute_path_pattern = r"/(?:[^/\s]+/)*[^/\s]+" if not re.search(absolute_path_pattern, prompt): await tool_ctx.error("The prompt does not contain an absolute path") return """Error: The prompt must contain at least one absolute path. IMPORTANT REMINDER FOR CLAUDE: When using the dispatch_agent tool, always include absolute paths in your prompt. Example of correct usage: - "Search for all instances of the 'config' variable in /Users/bytedance/project/mcp-claude-code" - "Find files that import the database module in /Users/bytedance/project/mcp-claude-code/src" The agent cannot access files without knowing their absolute locations.""" # Launch a single agent await tool_ctx.info("Launching agent") result = await self._execute_agent(prompt, tool_ctx) # Calculate execution time execution_time = time.time() - start_time # Format the result formatted_result = self._format_result(result, execution_time) # Log completion await tool_ctx.info(f"Agent execution completed in {execution_time:.2f}s") return formatted_result async def _execute_agent(self, prompt: str, tool_ctx: ToolContext) -> str: """Execute a single agent with the given prompt. Args: prompt: The task prompt for the agent tool_ctx: Tool context for logging Returns: Agent execution result """ # Get available tools for the agent agent_tools = get_allowed_agent_tools( self.available_tools, self.permission_manager, ) # Convert tools to OpenAI format openai_tools = convert_tools_to_openai_functions(agent_tools) # Log execution start await tool_ctx.info("Starting agent execution") # Create a result container result = "" try: # Create system prompt for this agent system_prompt = get_system_prompt( agent_tools, self.permission_manager, ) # Execute agent await tool_ctx.info(f"Executing agent task: {prompt[:50]}...") result = await self._execute_agent_with_tools( system_prompt, prompt, agent_tools, openai_tools, tool_ctx ) except Exception as e: # Log and return error result error_message = f"Error executing agent: {str(e)}" await tool_ctx.error(error_message) return f"Error: {error_message}" return result if result else "No results returned from agent" async def _execute_agent_with_tools( self, system_prompt: str, user_prompt: str, available_tools: list[BaseTool], openai_tools: list[ChatCompletionToolParam], tool_ctx: ToolContext, ) -> str: """Execute agent with tool handling. Args: system_prompt: System prompt for the agent user_prompt: User prompt for the agent available_tools: List of available tools openai_tools: List of tools in OpenAI format tool_ctx: Tool context for logging Returns: Agent execution result """ # Get model parameters and name model = get_default_model(self.model_override) params = get_model_parameters(max_tokens=self.max_tokens_override) # Initialize messages messages: Iterable[ChatCompletionMessageParam] = [] messages.append({"role": "system", "content": system_prompt}) messages.append({"role": "user", "content": user_prompt}) # Track tool usage for metrics tool_usage = {} total_tool_use_count = 0 iteration_count = 0 max_tool_uses = self.max_tool_uses # Safety limit to prevent infinite loops max_iterations = ( self.max_iterations ) # Add a maximum number of iterations for safety # Execute until the agent completes or reaches the limit while total_tool_use_count < max_tool_uses and iteration_count < max_iterations: iteration_count += 1 await tool_ctx.info(f"Calling model (iteration {iteration_count})...") try: # Configure model parameters based on capabilities completion_params = { "model": model, "messages": messages, "tools": openai_tools, "tool_choice": "auto", "temperature": params["temperature"], "timeout": params["timeout"], } if self.api_key_override: completion_params["api_key"] = self.api_key_override # Add max_tokens if provided if params.get("max_tokens"): completion_params["max_tokens"] = params.get("max_tokens") # Add base_url if provided if self.base_url_override: completion_params["base_url"] = self.base_url_override # Make the model call response = litellm.completion( **completion_params # pyright: ignore ) if len(response.choices) == 0: # pyright: ignore raise ValueError("No response choices returned") message = response.choices[0].message # pyright: ignore # Add message to conversation history messages.append(message) # pyright: ignore # If no tool calls, we're done if not message.tool_calls: return message.content or "Agent completed with no response." # Process tool calls tool_call_count = len(message.tool_calls) await tool_ctx.info(f"Processing {tool_call_count} tool calls") for tool_call in message.tool_calls: total_tool_use_count += 1 function_name = tool_call.function.name # Track usage tool_usage[function_name] = tool_usage.get(function_name, 0) + 1 # Log tool usage await tool_ctx.info(f"Agent using tool: {function_name}") # Parse the arguments try: function_args = json.loads(tool_call.function.arguments) except json.JSONDecodeError: function_args = {} # Find the matching tool tool = next( (t for t in available_tools if t.name == function_name), None ) if not tool: tool_result = f"Error: Tool '{function_name}' not found" else: try: tool_result = await tool.call( ctx=tool_ctx.mcp_context, **function_args ) except Exception as e: tool_result = f"Error executing {function_name}: {str(e)}" await tool_ctx.info( f"tool {function_name} run with args {function_args} and return {tool_result[: min(100, len(tool_result))]}" ) # Add the tool result to messages messages.append( { "role": "tool", "tool_call_id": tool_call.id, "name": function_name, "content": tool_result, } ) # Log progress await tool_ctx.info( f"Processed {len(message.tool_calls)} tool calls. Total: {total_tool_use_count}" ) except Exception as e: await tool_ctx.error(f"Error in model call: {str(e)}") # Avoid trying to JSON serialize message objects await tool_ctx.error(f"Message count: {len(messages)}") return f"Error in agent execution: {str(e)}" # If we've reached the limit, add a warning and get final response if total_tool_use_count >= max_tool_uses or iteration_count >= max_iterations: messages.append( { "role": "system", "content": "You have reached the maximum iteration. Please provide your final response.", } ) try: # Make a final call to get the result final_response = litellm.completion( model=model, messages=messages, temperature=params["temperature"], timeout=params["timeout"], max_tokens=params.get("max_tokens"), ) return ( final_response.choices[0].message.content or "Agent reached max iteration limit without a response." ) # pyright: ignore except Exception as e: await tool_ctx.error(f"Error in final model call: {str(e)}") return f"Error in final response: {str(e)}" # Should not reach here but just in case return "Agent execution completed after maximum iterations." def _format_result(self, result: str, execution_time: float) -> str: """Format agent result with metrics. Args: result: Raw result from agent execution_time: Execution time in seconds Returns: Formatted result with metrics """ return f"""Agent execution completed in {execution_time:.2f} seconds. AGENT RESPONSE: {result} """ @override def register(self, mcp_server: FastMCP) -> None: """Register this agent tool with the MCP server. Creates a wrapper function with explicitly defined parameters that match the tool's parameter schema and registers it with the MCP server. Args: mcp_server: The FastMCP server instance """ tool_self = self # Create a reference to self for use in the closure @mcp_server.tool(name=self.name, description=self.description) async def dispatch_agent( prompt: Prompt, ) -> str: ctx = get_context() return await tool_self.call(ctx, prompt=prompt)

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/SDGLBL/mcp-claude-code'

If you have feedback or need assistance with the MCP directory API, please join our Discord server