# Knowledge Graph Integration - Implementation Summary
**Status:** Partial Implementation Complete
**Date:** 2025-10-15
## Overview
Integrated Knowledge Graph service with graceful fallback behavior. The RAG system now:
- ✅ Tracks chunk boundaries for KG processing
- ✅ Health-checks KG service before queueing
- ✅ Falls back to vector-only search if KG unavailable
- ✅ Preserves all existing functionality when KG is down
## Implemented Components
### 1. Database Schema (✅ COMPLETE)
**Location:** `migrations/001_add_kg_support.sql` and `.py`
**New Tables:**
- `content_chunks` - Tracks chunk metadata with char positions
- `chunk_entities` - Stores extracted entities per chunk
- `chunk_relationships` - Stores relationships between entities
- `kg_processing_queue` - Manages KG processing queue
**New Columns on `crawled_content`:**
- `kg_processed` - Boolean flag
- `kg_entity_count` - Count of extracted entities
- `kg_relationship_count` - Count of relationships
- `kg_document_id` - Neo4j Document node ID
- `kg_processed_at` - Processing timestamp
**Migration:**
- Automatically runs on database initialization
- Safely handles existing databases
- Rollback support included
### 2. KG Service Configuration (✅ COMPLETE)
**Location:** `core/data/kg_config.py`
**Features:**
- Environment-based configuration (`KG_SERVICE_ENABLED`, `KG_SERVICE_URL`)
- Health checking with configurable intervals
- Consecutive failure tracking
- Graceful degradation when service unavailable
- HTTP client pooling for efficiency
**Environment Variables:**
```bash
KG_SERVICE_ENABLED=true # Enable/disable KG integration
KG_SERVICE_URL=http://kg-service:8088 # KG service endpoint
KG_SERVICE_TIMEOUT=300.0 # Request timeout (5 minutes)
KG_HEALTH_CHECK_INTERVAL=30.0 # Health check frequency (seconds)
KG_MAX_RETRIES=3 # Max retry attempts
```
**Usage:**
```python
from core.data.kg_config import get_kg_config
kg_config = get_kg_config()
# Check if service is healthy
if await kg_config.check_health():
# Service available
result = await kg_config.send_to_kg_queue(...)
```
### 3. Queue Management (✅ COMPLETE)
**Location:** `core/data/kg_queue.py`
**KGQueueManager Class:**
**Methods:**
- `calculate_chunk_boundaries()` - Map chunks to character positions in full document
- `store_chunk_metadata()` - Save chunk boundaries to `content_chunks` table
- `queue_for_kg_processing()` - Queue content with health check
- `get_chunk_metadata_for_content()` - Retrieve chunk data
- `write_kg_results()` - Write entities/relationships back to SQLite
**Behavior:**
- Health-checks KG service before queuing
- Marks as `skipped` if service unavailable (allows retry later)
- Stores chunk boundaries with `kg_processed=0` flag
- Non-blocking - doesn't fail RAG operations
### 4. Storage Layer Updates (✅ COMPLETE)
**Location:** `core/data/storage.py`
**Changes to `generate_embeddings()`:**
```python
# After creating embeddings:
1. Get vector rowids
2. Calculate chunk boundaries
3. Store to content_chunks table
4. Log success
```
**Changes to `store_content()`:**
```python
# After generating embeddings:
1. Check if KG service enabled
2. Schedule async KG queue check (non-blocking)
3. Continue with RAG storage regardless of KG result
```
**New Method: `_queue_for_kg_async()`**
- Async helper for KG queuing
- Checks health
- Queues content
- Logs results
- Never fails parent operation
**Migration Integration:**
- Automatically runs migration 001 on `init_database()`
- Gracefully handles missing migration files
- Logs migration status
## Graceful Fallback Behavior
### When KG Service is DOWN:
1. **Health Check Fails** → Service marked unhealthy
2. **Queue Attempt** → Content marked as `skipped` with reason `kg_service_unavailable`
3. **Chunk Tracking** → Chunks still stored with `kg_processed=0`
4. **RAG Operations** → Continue normally with vector-only search
5. **User Experience** → Seamless - no errors, just no KG enhancement
### When KG Service Comes BACK:
1. Background worker can query for `status='skipped'` items
2. Retry KG processing for previously skipped content
3. Update `kg_processed=1` on success
4. Search automatically uses KG data when available
### Error Handling:
```python
# Example: Storage continues even if KG fails
try:
# Store content to SQLite
content_id = store_to_sqlite()
# Generate embeddings
generate_embeddings(content_id)
# Try KG queuing (non-blocking)
try:
await queue_for_kg()
except:
logger.warning("KG queuing failed - continuing")
# Return success regardless
return {"success": True, "content_id": content_id}
```
## Data Flow
### Successful KG Processing:
```
User → Crawl → Clean → Chunk → Embed → SQLite
↓
Calculate chunk boundaries
↓
Store to content_chunks
↓
Check KG service health
↓
Service healthy?
✓ Yes ✗ No
↓ ↓
Queue as Mark as
'pending' 'skipped'
↓
Background worker
processes queue
↓
POST to kg-service:8088
↓
Entity & relationship extraction
↓
Store in Neo4j
↓
Return results to worker
↓
Write entities/relationships to SQLite
↓
Update kg_processed=1, chunks.kg_processed=1
```
### KG Service Unavailable:
```
User → Crawl → Clean → Chunk → Embed → SQLite
↓
Calculate chunk boundaries
↓
Store to content_chunks (kg_processed=0)
↓
Check KG service health
↓
Service unhealthy
↓
Queue as 'skipped' with reason
↓
Continue RAG operations
↓
User gets vector-only results
(No KG enhancement)
```
## Database Schema Details
### content_chunks Table
```sql
CREATE TABLE content_chunks (
rowid INTEGER PRIMARY KEY, -- Same as content_vectors rowid
content_id INTEGER NOT NULL, -- FK to crawled_content
chunk_index INTEGER NOT NULL, -- 0, 1, 2, ...
chunk_text TEXT NOT NULL,
char_start INTEGER NOT NULL, -- Position in original markdown
char_end INTEGER NOT NULL,
word_count INTEGER,
kg_processed BOOLEAN DEFAULT 0, -- KG extraction attempted?
created_at DATETIME DEFAULT CURRENT_TIMESTAMP
);
```
**Purpose:** Maps chunks to their exact positions in the original document
**Example:**
```
rowid | content_id | chunk_index | char_start | char_end | kg_processed
45001 | 123 | 0 | 0 | 2500 | 0
45002 | 123 | 1 | 2450 | 4950 | 0
```
### kg_processing_queue Table
```sql
CREATE TABLE kg_processing_queue (
id INTEGER PRIMARY KEY AUTOINCREMENT,
content_id INTEGER NOT NULL,
status TEXT DEFAULT 'pending', -- pending, processing, completed, failed, skipped
priority INTEGER DEFAULT 1,
queued_at DATETIME DEFAULT CURRENT_TIMESTAMP,
processing_started_at DATETIME,
processed_at DATETIME,
retry_count INTEGER DEFAULT 0,
error_message TEXT,
result_summary TEXT, -- JSON with stats
skipped_reason TEXT -- e.g., 'kg_service_unavailable'
);
```
**Statuses:**
- `pending` - Waiting for background worker
- `processing` - Currently being processed
- `completed` - Successfully processed
- `failed` - Failed after max retries
- `skipped` - KG service unavailable (can retry later)
## Configuration Examples
### Enable KG Integration
```bash
# In docker-compose.yml or .env
KG_SERVICE_ENABLED=true
KG_SERVICE_URL=http://kg-service:8088
KG_HEALTH_CHECK_INTERVAL=30.0
```
### Disable KG Integration (Fallback to Vector-Only)
```bash
KG_SERVICE_ENABLED=false
```
## Remaining Work
### ❌ NOT YET IMPLEMENTED:
1. **Background KG Worker** (`core/workers/kg_worker.py`)
- Polls `kg_processing_queue` table
- Sends documents to kg-service
- Writes results back to SQLite
- Handles retries and failures
2. **Graph-Enhanced Search** (`core/rag_processor.py` or `storage.py`)
- Query `chunk_entities` and `chunk_relationships` tables
- Expand queries using entity/relationship data
- Combine graph relevance with vector similarity
- Re-rank results
3. **API Endpoints** (`api/api.py`)
- `/kg/status` - Get KG service health and stats
- `/kg/reprocess/<content_id>` - Retry KG processing for specific content
- `/kg/queue/stats` - Queue statistics
4. **Docker Integration**
- Update `docker-compose.yml` to include kg-service
- Add kg-service to `crawler_default` network
- Environment variable configuration
## Testing
### Manual Testing:
```bash
# 1. Start mcpragcrawl4ai WITHOUT kg-service
docker-compose up mcpragcrawl4ai
# 2. Crawl some content
curl -X POST http://localhost:8080/crawl \
-H "Content-Type: application/json" \
-d '{"url": "https://docs.python.org/3/tutorial/"}'
# 3. Check database
sqlite3 /app/data/crawl4ai_rag.db
> SELECT COUNT(*) FROM content_chunks;
> SELECT COUNT(*) FROM kg_processing_queue WHERE status='skipped';
# 4. Start kg-service
docker-compose up -d kg-service
# 5. Health check should now pass
# 6. New content should queue as 'pending' instead of 'skipped'
```
### Verify Fallback Behavior:
```bash
# Stop kg-service while crawling
docker-compose stop kg-service
# Crawl content - should still work
curl -X POST http://localhost:8080/crawl ...
# Check queue - should be marked 'skipped'
sqlite3 ... "SELECT status, skipped_reason FROM kg_processing_queue ORDER BY id DESC LIMIT 1;"
```
## Benefits
✅ **Non-Breaking**: Existing RAG functionality unchanged
✅ **Graceful Degradation**: Falls back to vector-only if KG unavailable
✅ **Future-Proof**: Chunk metadata preserved for later KG processing
✅ **Health-Aware**: Active monitoring prevents failed requests
✅ **Retry-Capable**: Skipped items can be retried when service returns
✅ **No Data Loss**: All chunk boundaries tracked regardless of KG status
## Next Steps
1. Implement background KG worker
2. Add graph-enhanced search logic
3. Create KG management API endpoints
4. Update docker-compose.yml
5. Write integration tests
6. Update user documentation
---
**Implementation Status:** 60% Complete
**Core Infrastructure:** ✅ Ready
**Background Processing:** ❌ Pending
**Search Enhancement:** ❌ Pending