Skip to main content
Glama

MCP Embedding Storage Server

save-memory

Store content in a vector database for semantic search and retrieval using natural language queries. Save text with unique identifiers to enable similarity-based information lookup.

Instructions

Save content to vector database

Input Schema

NameRequiredDescriptionDefault
contentYesThe content to store
parentPathNoPath of the parent content (if applicable)
pathYesUnique identifier path for the content
sourceNoSource of the content
typeNoContent type (e.g., 'markdown')

Input Schema (JSON Schema)

{ "properties": { "content": { "description": "The content to store", "type": "string" }, "parentPath": { "description": "Path of the parent content (if applicable)", "type": "string" }, "path": { "description": "Unique identifier path for the content", "type": "string" }, "source": { "description": "Source of the content", "type": "string" }, "type": { "description": "Content type (e.g., 'markdown')", "type": "string" } }, "required": [ "content", "path" ], "type": "object" }

Other Tools from MCP Embedding Storage Server

Related Tools

    MCP directory API

    We provide all the information about MCP servers via our MCP API.

    curl -X GET 'https://glama.ai/api/mcp/v1/servers/RichardFelix999/Knowledge-EmbeddingAPI-MCP'

    If you have feedback or need assistance with the MCP directory API, please join our Discord server