Skip to main content
Glama

search-vectors

Find files and code snippets using natural language queries in your project directory with semantic vector search.

Instructions

Search for files and code snippets using natural language queries

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
queryYesNatural language search query
pathNoProject path to search (defaults to current directory)
providerNoEmbedding provider to use (defaults to configured provider)
limitNoMaximum number of results
similarityThresholdNoMinimum similarity score (0-1)
filesOnlyNoReturn only file paths without chunks

Implementation Reference

  • The main handler function that executes the 'search-vectors' tool logic. It validates input, checks for indexed vectors, gets embedding provider, and calls either getRelatedFiles or searchVectors based on filesOnly flag, then formats the results.
    export async function handleSearchVectors(args: SearchVectorsInput): Promise<string> { const configManager = new ConfigManager(); logger.log('Searching vectors...'); try { // Check if project is indexed const vectorCount = await getVectorCount(args.path); if (vectorCount === 0) { return 'No vectors found. Please run index-vectors first.'; } // Get embedding provider let provider: EmbeddingProvider; if (args.provider) { provider = new EmbeddingProvider({ provider: args.provider }, configManager); } else { provider = await getDefaultEmbeddingProvider(configManager); } if (args.filesOnly) { // Get related files only const files = await getRelatedFiles({ projectPath: args.path, query: args.query, provider, limit: args.limit, similarityThreshold: args.similarityThreshold, }); if (files.length === 0) { return 'No matching files found.'; } return `Found ${files.length} related files:\n\n${files.map(f => `- ${f}`).join('\n')}`; } else { // Get full search results with chunks const results = await searchVectors({ projectPath: args.path, query: args.query, provider, limit: args.limit, similarityThreshold: args.similarityThreshold, }); if (results.length === 0) { return 'No matching results found.'; } const formatted = results.map((result, index) => { const preview = result.chunk.slice(0, 200).replace(/\n/g, ' '); return `${index + 1}. ${result.relpath} Similarity: ${(result.similarity * 100).toFixed(1)}% Chunk ID: ${result.chunkId} Preview: ${preview}${result.chunk.length > 200 ? '...' : ''}`; }).join('\n\n'); return `Found ${results.length} matches:\n\n${formatted}`; } } catch (error) { logger.error('Vector search failed:', error); throw new Error(`Search failed: ${error instanceof Error ? error.message : String(error)}`); } }
  • Zod schema defining the input parameters for the search-vectors tool, used for validation.
    // Input schema for search-vectors tool export const SearchVectorsSchema = z.object({ query: z.string(), path: z.string().default(process.cwd()), provider: z.enum(['openai', 'azure', 'gemini']).optional(), limit: z.number().min(1).max(50).default(10), similarityThreshold: z.number().min(0).max(1).default(0.7), filesOnly: z.boolean().default(false), });
  • src/server.ts:467-489 (registration)
    Registration of the 'search-vectors' tool on the MCP server, dynamically importing and calling the handler function.
    server.registerTool("search-vectors", { title: "Search Vectors", description: "Search for files and code snippets using natural language queries", inputSchema: SearchVectorsSchema.shape, }, async (args) => { const { handleSearchVectors } = await import("./handlers/vector"); const result = await handleSearchVectors({ query: args.query, path: args.path || process.cwd(), provider: args.provider, limit: args.limit || 10, similarityThreshold: args.similarityThreshold || 0.7, filesOnly: args.filesOnly || false, }); return { content: [ { type: "text", text: result } ] }; });

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/RealMikeChong/ultra-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server