Skip to main content
Glama

janus

Generate high-quality images from text prompts using customizable dimensions and quantities. Integrates with FAL AI models for automatic local downloads.

Instructions

Janus - Multimodal understanding and generation

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
image_sizeNolandscape_4_3
num_imagesNo
promptYesText prompt for image generation

Implementation Reference

  • The handler function for executing the 'janus' tool (and other image generation models). It prepares input parameters, calls fal.subscribe on the model endpoint ('fal-ai/janus'), processes the resulting images (downloads, data URLs, auto-open), and returns formatted content.
    private async handleImageGeneration(args: any, model: any) { const { prompt, image_size = 'landscape_4_3', num_inference_steps = 25, guidance_scale = 3.5, num_images = 1, negative_prompt, safety_tolerance, raw, } = args; try { // Configure FAL client lazily with query config override configureFalClient(this.currentQueryConfig); const inputParams: any = { prompt }; // Add common parameters if (image_size) inputParams.image_size = image_size; if (num_images > 1) inputParams.num_images = num_images; // Add model-specific parameters based on model capabilities if (model.id.includes('flux') || model.id.includes('stable_diffusion')) { if (num_inference_steps) inputParams.num_inference_steps = num_inference_steps; if (guidance_scale) inputParams.guidance_scale = guidance_scale; } if ((model.id.includes('stable_diffusion') || model.id === 'ideogram_v3') && negative_prompt) { inputParams.negative_prompt = negative_prompt; } if (model.id.includes('flux_pro') && safety_tolerance) { inputParams.safety_tolerance = safety_tolerance; } if (model.id === 'flux_pro_ultra' && raw !== undefined) { inputParams.raw = raw; } const result = await fal.subscribe(model.endpoint, { input: inputParams }); const imageData = result.data as FalImageResult; const processedImages = await downloadAndProcessImages(imageData.images, model.id); return { content: [ { type: 'text', text: JSON.stringify({ model: model.name, id: model.id, endpoint: model.endpoint, prompt, images: processedImages, metadata: inputParams, download_path: DOWNLOAD_PATH, data_url_settings: { enabled: ENABLE_DATA_URLS, max_size_mb: Math.round(MAX_DATA_URL_SIZE / 1024 / 1024), }, autoopen_settings: { enabled: AUTOOPEN, note: AUTOOPEN ? "Files automatically opened with default application" : "Auto-open disabled" }, }, null, 2), }, ], }; } catch (error) { throw new Error(`${model.name} generation failed: ${error}`); } }
  • src/index.ts:108-108 (registration)
    Registers the 'janus' model in the MODEL_REGISTRY.imageGeneration array, defining its id, endpoint, name, and description used for dynamic tool registration and lookup.
    { id: 'janus', endpoint: 'fal-ai/janus', name: 'Janus', description: 'Multimodal understanding and generation' }
  • Dynamically generates the input schema for 'janus' tool (imageGeneration category), defining parameters like prompt, image_size, num_images, and model-specific options.
    if (category === 'imageGeneration') { baseSchema.inputSchema.properties = { prompt: { type: 'string', description: 'Text prompt for image generation' }, image_size: { type: 'string', enum: ['square_hd', 'square', 'portrait_4_3', 'portrait_16_9', 'landscape_4_3', 'landscape_16_9'], default: 'landscape_4_3' }, num_images: { type: 'number', default: 1, minimum: 1, maximum: 4 }, }; baseSchema.inputSchema.required = ['prompt']; // Add model-specific parameters if (model.id.includes('flux') || model.id.includes('stable_diffusion')) { baseSchema.inputSchema.properties.num_inference_steps = { type: 'number', default: 25, minimum: 1, maximum: 50 }; baseSchema.inputSchema.properties.guidance_scale = { type: 'number', default: 3.5, minimum: 1, maximum: 20 }; } if (model.id.includes('stable_diffusion') || model.id === 'ideogram_v3') { baseSchema.inputSchema.properties.negative_prompt = { type: 'string', description: 'Negative prompt' }; } } else if (category === 'textToVideo') {
  • src/index.ts:400-402 (registration)
    Dynamically registers the 'janus' tool in the list of available tools by iterating over imageGeneration models and adding their schemas.
    for (const model of MODEL_REGISTRY.imageGeneration) { tools.push(this.generateToolSchema(model, 'imageGeneration')); }
  • Dispatches calls to the 'janus' tool handler by checking if the tool name matches an imageGeneration model and routing to handleImageGeneration.
    const model = getModelById(name); if (!model) { throw new McpError( ErrorCode.MethodNotFound, `Unknown model: ${name}` ); } // Determine category and handle accordingly if (MODEL_REGISTRY.imageGeneration.find(m => m.id === name)) { return await this.handleImageGeneration(args, model);

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/RamboRogers/fal-image-video-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server