Skip to main content
Glama

SAP OData to MCP Server

by Raistlin82
ai-integration.ts13.5 kB
/** * AI Integration Service for SAP MCP Server * Generic service that works with any MCP client (Claude, GPT, Gemini, local models, etc.) */ import { OptimizedQuery, AnalysisResult, AnomalyReport, BusinessInsight, Recommendation, } from '../types/ai-types.js'; import { EntityType } from '../types/sap-types.js'; import { Logger } from 'winston'; import * as winston from 'winston'; export class AIIntegrationService { private logger: Logger; private isEnabled: boolean; constructor() { this.logger = winston.createLogger({ level: process.env.LOG_LEVEL || 'info', format: winston.format.json(), transports: [ new winston.transports.Console({ format: winston.format.simple(), }), ], }); this.isEnabled = process.env.AI_FEATURES_ENABLED === 'true'; if (this.isEnabled) { this.logger.info('AI Integration Service initialized - compatible with any MCP client'); } } /** * Analyzes data using AI capabilities (generic prompt-response pattern) * Works with any MCP client that can process prompts */ async analyzeData( prompt: string, data: any[], analysisType: 'trend' | 'anomaly' | 'forecast' | 'correlation' = 'trend' ): Promise<AnalysisResult> { if (!this.isEnabled) { return this.createFallbackAnalysis(data, analysisType); } try { // Structured prompt for any AI model const structuredPrompt = this.buildAnalysisPrompt(prompt, data, analysisType); // The actual AI call would happen through the MCP protocol // For now, we simulate the structure that any MCP client would return const aiResponse = await this.callAIThroughMCP(structuredPrompt); return this.parseAIAnalysisResponse(aiResponse, data); } catch (error) { this.logger.error('AI analysis failed', { error: error instanceof Error ? error.message : 'Unknown error', }); return this.createFallbackAnalysis(data, analysisType); } } /** * Optimizes OData queries using AI intelligence * Generic approach that works with any AI model */ async optimizeQuery( userIntent: string, entityMetadata: EntityType, userContext?: any ): Promise<OptimizedQuery> { if (!this.isEnabled) { return this.createBasicQuery(userIntent, entityMetadata); } try { const optimizationPrompt = this.buildQueryOptimizationPrompt( userIntent, entityMetadata, userContext ); const aiResponse = await this.callAIThroughMCP(optimizationPrompt); return this.parseQueryOptimizationResponse(aiResponse, entityMetadata); } catch (error) { this.logger.error('Query optimization failed', { error: error instanceof Error ? error.message : 'Unknown error', }); return this.createBasicQuery(userIntent, entityMetadata); } } /** * Detects anomalies in SAP data using AI analysis * Generic pattern that works with any AI model */ async detectAnomalies( currentData: any[], historicalData: any[], entitySet: string ): Promise<AnomalyReport[]> { if (!this.isEnabled) { return this.createBasicAnomalyDetection(currentData, historicalData, entitySet); } try { const anomalyPrompt = this.buildAnomalyDetectionPrompt( currentData, historicalData, entitySet ); const aiResponse = await this.callAIThroughMCP(anomalyPrompt); return this.parseAnomalyDetectionResponse(aiResponse, entitySet); } catch (error) { this.logger.error('Anomaly detection failed', { error: error instanceof Error ? error.message : 'Unknown error', }); return this.createBasicAnomalyDetection(currentData, historicalData, entitySet); } } /** * Generates business insights from SAP data * Works with any AI model that can understand business context */ async generateBusinessInsights( data: any[], entitySet: string, businessContext?: string ): Promise<BusinessInsight[]> { if (!this.isEnabled) { return this.createBasicInsights(data, entitySet); } try { const insightsPrompt = this.buildBusinessInsightsPrompt(data, entitySet, businessContext); const aiResponse = await this.callAIThroughMCP(insightsPrompt); return this.parseBusinessInsightsResponse(aiResponse); } catch (error) { this.logger.error('Business insights generation failed', { error: error instanceof Error ? error.message : 'Unknown error', }); return this.createBasicInsights(data, entitySet); } } // Private methods for building structured prompts private buildAnalysisPrompt(userPrompt: string, data: any[], analysisType: string): string { return ` ANALYSIS REQUEST: Type: ${analysisType} User Request: ${userPrompt} DATA SAMPLE (first 10 records): ${JSON.stringify(data.slice(0, 10), null, 2)} TOTAL RECORDS: ${data.length} REQUIRED OUTPUT FORMAT: { "insights": [ { "type": "trend|anomaly|correlation|forecast|risk", "title": "Brief title", "description": "Detailed description", "impact": "high|medium|low", "confidence": 0.0-1.0, "supportingData": [] } ], "recommendations": [ { "title": "Actionable recommendation", "description": "What to do", "priority": "critical|high|medium|low", "estimatedImpact": "Expected outcome" } ] } Please analyze the data and provide structured insights. `; } private buildQueryOptimizationPrompt( userIntent: string, entityMetadata: EntityType, userContext?: any ): string { return ` QUERY OPTIMIZATION REQUEST: User Intent: "${userIntent}" Entity Metadata: - Name: ${entityMetadata.name} - Available Fields: ${entityMetadata.properties.map(p => `${p.name} (${p.type})`).join(', ')} - Key Fields: ${entityMetadata.keys.join(', ')} User Context: ${userContext ? JSON.stringify(userContext) : 'Not provided'} REQUIRED OUTPUT FORMAT: { "select": ["field1", "field2"], "filter": "OData filter expression", "orderby": "field1 desc, field2 asc", "top": 100, "explanation": "Why this optimization was chosen", "confidence": 0.0-1.0 } Generate the most efficient OData query for this intent. `; } private buildAnomalyDetectionPrompt( currentData: any[], historicalData: any[], entitySet: string ): string { return ` ANOMALY DETECTION REQUEST: Entity Set: ${entitySet} Current Data (${currentData.length} records): ${JSON.stringify(currentData.slice(0, 5), null, 2)} Historical Baseline (${historicalData.length} records): Statistical summary: ${this.calculateBasicStats(historicalData)} REQUIRED OUTPUT FORMAT: { "anomalies": [ { "type": "volume|value|pattern|process", "severity": "critical|high|medium|low", "title": "Brief title", "description": "What is anomalous", "confidence": 0.0-1.0, "businessImpact": "Potential business impact", "recommendedActions": ["action1", "action2"] } ] } Identify anomalies compared to historical patterns. `; } private buildBusinessInsightsPrompt( data: any[], entitySet: string, businessContext?: string ): string { return ` BUSINESS INSIGHTS REQUEST: Entity Set: ${entitySet} Business Context: ${businessContext || 'General business analysis'} Data Sample: ${JSON.stringify(data.slice(0, 10), null, 2)} Total Records: ${data.length} REQUIRED OUTPUT FORMAT: { "insights": [ { "type": "trend|performance|risk|opportunity", "title": "Key insight", "description": "Detailed explanation", "impact": "high|medium|low", "confidence": 0.0-1.0, "actionable": true|false } ] } Generate business-relevant insights from this SAP data. `; } // Simulate calling AI through MCP protocol private async callAIThroughMCP(prompt: string): Promise<any> { // In a real implementation, this would use the MCP SDK to call // the connected AI client (Claude, GPT, etc.) // For now, we simulate a basic response structure this.logger.debug('Calling AI through MCP protocol', { promptLength: prompt.length, }); // Simulate AI processing delay await new Promise(resolve => setTimeout(resolve, 100)); // Return structured response that any AI model could provide return { response: 'AI analysis would be returned here', confidence: 0.8, processingTime: 150, }; } // Response parsing methods private parseAIAnalysisResponse(aiResponse: any, originalData: any[]): AnalysisResult { // Parse and validate AI response into structured format return { insights: this.createBasicInsights(originalData, 'unknown'), recommendations: [], confidence: aiResponse.confidence || 0.5, visualizations: [], alerts: [], metadata: { analyzedAt: new Date(), dataPoints: originalData.length, processingTime: aiResponse.processingTime || 0, }, }; } private parseQueryOptimizationResponse( aiResponse: any, entityMetadata: EntityType ): OptimizedQuery { // Parse AI response into OData query return { url: `${entityMetadata.entitySet}?$select=${entityMetadata.properties .slice(0, 5) .map(p => p.name) .join(',')}`, explanation: 'Basic query generated (AI parsing not implemented yet)', cacheStrategy: 'medium', estimatedRows: 100, confidence: aiResponse.confidence || 0.5, }; } private parseAnomalyDetectionResponse(aiResponse: any, entitySet: string): AnomalyReport[] { // Parse AI response into anomaly reports return []; } private parseBusinessInsightsResponse(aiResponse: any): BusinessInsight[] { // Parse AI response into business insights return []; } // Fallback methods when AI is disabled or fails private createFallbackAnalysis(data: any[], analysisType: string): AnalysisResult { return { insights: this.createBasicInsights(data, 'fallback'), recommendations: this.createBasicRecommendations(), confidence: 0.3, // Low confidence for basic analysis visualizations: [], alerts: [], metadata: { analyzedAt: new Date(), dataPoints: data.length, processingTime: 0, }, }; } private createBasicQuery(userIntent: string, entityMetadata: EntityType): OptimizedQuery { // Create a basic OData query without AI optimization return { url: `${entityMetadata.entitySet}?$top=100`, explanation: 'Basic query without AI optimization', cacheStrategy: 'short', estimatedRows: 100, confidence: 0.3, }; } private createBasicAnomalyDetection( currentData: any[], historicalData: any[], entitySet: string ): AnomalyReport[] { // Basic statistical anomaly detection without AI if (currentData.length === 0) return []; const volumeAnomaly = Math.abs(currentData.length - historicalData.length) > historicalData.length * 0.5; if (volumeAnomaly) { return [ { id: `anomaly_${Date.now()}`, entitySet, anomalyType: 'volume', severity: 'medium', title: 'Volume Change Detected', description: `Significant change in record count: ${currentData.length} vs historical average`, detectedAt: new Date(), dataPoints: currentData, confidence: 0.6, businessImpact: 'Potential process or system change', recommendedActions: ['Investigate data source', 'Check system status'], correlatedAnomalies: [], }, ]; } return []; } private createBasicInsights(data: any[], entitySet: string): BusinessInsight[] { if (data.length === 0) return []; return [ { type: 'trend', title: `${entitySet} Data Overview`, description: `Found ${data.length} records in ${entitySet}`, impact: 'low', confidence: 0.5, supportingData: data.slice(0, 3), }, ]; } private createBasicRecommendations(): Recommendation[] { return [ { id: 'basic_rec_1', title: 'Enable AI Features', description: 'Set AI_FEATURES_ENABLED=true to get intelligent insights', priority: 'medium', category: 'configuration', estimatedImpact: 'Enhanced analytics and automation', actionable: true, requiredActions: ['Update environment variables', 'Restart service'], }, ]; } // Utility methods private calculateBasicStats(data: any[]): string { if (data.length === 0) return 'No historical data'; return `Count: ${data.length}, Sample: ${JSON.stringify(data[0] || {})}`; } // Configuration methods isAIEnabled(): boolean { return this.isEnabled; } getCapabilities(): string[] { const capabilities = ['basic_analysis', 'query_building', 'anomaly_detection']; if (this.isEnabled) { capabilities.push('ai_enhanced_analysis', 'intelligent_optimization', 'predictive_insights'); } return capabilities; } async healthCheck(): Promise<{ status: string; capabilities: string[]; aiEnabled: boolean }> { return { status: 'operational', capabilities: this.getCapabilities(), aiEnabled: this.isEnabled, }; } } // Singleton instance export const aiIntegration = new AIIntegrationService();

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Raistlin82/btp-sap-odata-to-mcp-server-optimized'

If you have feedback or need assistance with the MCP directory API, please join our Discord server