Skip to main content
Glama

Weather Info MCP Server

by Raffay0177

Weather Info App with MCP Server

A simple weather information application built with FastAPI and integrated with an MCP (Model Context Protocol) server for use with Gemini CLI.

šŸ“‹ Requirements Checklist

  • āœ… FastAPI weather application

  • āœ… MCP Server implementation

  • āœ… Gemini CLI integration

  • āœ… MCP tools demonstration

  • āœ… Screen recording (see SCREEN_RECORDING_GUIDE.md)

šŸŽ„ Screen Recording

IMPORTANT: This repository includes a screen recording demonstrating:

  1. MCP server running

  2. gemini mcp list command showing available tools

  3. Usage of all MCP tools (get_weather, get_weather_batch, check_api_health)

See SCREEN_RECORDING_GUIDE.md for detailed recording instructions.

Project Structure

. ā”œā”€ā”€ weather_api.py # FastAPI weather application ā”œā”€ā”€ mcp_server.py # MCP server exposing weather tools ā”œā”€ā”€ requirements.txt # Python dependencies ā”œā”€ā”€ mcp_config.json # Gemini CLI MCP configuration ā”œā”€ā”€ demo.py # Demo script for testing └── README.md # This file

Features

  • FastAPI Weather API: RESTful API providing weather information

  • MCP Server: Exposes weather functionality as MCP tools

  • Gemini CLI Integration: Ready to use with Google's Gemini CLI

  • Multiple Tools: Get weather for single/multiple cities, health check

Installation

  1. Clone this repository:

git clone <your-repo-url> cd "MCp derver using FAST MCP"
  1. Install dependencies:

pip install -r requirements.txt

Running the Application

Step 1: Start the FastAPI Weather Server

In one terminal:

python weather_api.py

The API will be available at http://localhost:8000

You can test it:

# Using curl curl http://localhost:8000/weather?city=London # Or using the browser http://localhost:8000/weather?city=Paris

Step 2: Configure Gemini CLI for MCP

The MCP server uses stdio transport. Create or update your Gemini CLI configuration file:

On Windows: %APPDATA%\Google\Gemini CLI\mcp_config.json

On macOS/Linux: ~/.config/google-gemini-cli/mcp_config.json

Example configuration:

{ "mcpServers": { "weather-info": { "command": "python", "args": ["<absolute-path-to-mcp_server.py>"], "env": {} } } }

For Windows, use full path like:

{ "mcpServers": { "weather-info": { "command": "python", "args": ["B:\\MCp derver using FAST MCP\\mcp_server.py"], "env": {} } } }

Step 3: Use with Gemini CLI

  1. Start Gemini CLI

  2. List available MCP tools:

gemini mcp list
  1. Use the tools:

# Get weather for a city gemini mcp call weather-info get_weather --city "Tokyo" # Get weather for multiple cities gemini mcp call weather-info get_weather_batch --cities "London,Paris,New York" # Check API health gemini mcp call weather-info check_api_health

Available MCP Tools

1. get_weather

Get current weather information for a single city.

Parameters:

  • city (required): Name of the city

  • country (optional): Country name

Example:

gemini mcp call weather-info get_weather --city "London" --country "UK"

2. get_weather_batch

Get weather information for multiple cities at once.

Parameters:

  • cities (required): Comma-separated list of cities

Example:

gemini mcp call weather-info get_weather_batch --cities "Tokyo,Seoul,Beijing"

3. check_api_health

Check if the weather API is running and healthy.

Example:

gemini mcp call weather-info check_api_health

Testing

Run the demo script to test the setup:

python demo.py

API Endpoints

The FastAPI server provides:

  • GET / - API information

  • GET /health - Health check

  • GET /weather?city=<name>&country=<name> - Get weather (GET)

  • POST /weather - Get weather (POST with JSON body)

Screen Recording Instructions

To create a screen recording demonstrating the MCP server:

  1. Start the FastAPI server: python weather_api.py

  2. Open Gemini CLI

  3. Show gemini mcp list command to see available tools

  4. Demonstrate each tool:

    • get_weather for a single city

    • get_weather_batch for multiple cities

    • check_api_health

  5. Show the responses and how they work together

Project Files

  • weather_api.py - FastAPI weather application

  • mcp_server.py - MCP server exposing weather tools

  • demo.py - Testing and demonstration script

  • get_path.py - Helper to get correct paths for configuration

  • test_mcp_structure.py - Verify MCP imports and structure

  • requirements.txt - Python dependencies

  • mcp_config.json - Example Gemini CLI configuration

Documentation

  • README.md - This file (main documentation)

  • QUICK_START.md - Quick setup guide

  • setup_instructions.md - Detailed setup instructions

  • SCREEN_RECORDING_GUIDE.md - Guide for creating demo video

  • PROJECT_SUMMARY.md - Complete project overview

Notes

  • The weather data is mock/simulated for demonstration purposes

  • Make sure the FastAPI server is running before using MCP tools

  • The MCP server communicates with the FastAPI server via HTTP

  • All paths in the configuration must be absolute paths

Troubleshooting

MCP server not connecting:

  • Ensure FastAPI server is running on port 8000

  • Check that the path to mcp_server.py in the config is correct and absolute

  • Verify Python is in your PATH

Tools not appearing:

  • Restart Gemini CLI after updating the configuration

  • Check the MCP server logs for errors

  • Verify the configuration JSON syntax is correct

-
security - not tested
F
license - not found
-
quality - not tested

local-only server

The server can only run on the client's local machine because it depends on local resources.

Provides weather information through MCP tools integrated with a FastAPI backend, enabling users to query current weather for single or multiple cities and check API health status.

  1. šŸ“‹ Requirements Checklist
    1. šŸŽ„ Screen Recording
      1. Project Structure
        1. Features
          1. Installation
            1. Running the Application
              1. Step 1: Start the FastAPI Weather Server
              2. Step 2: Configure Gemini CLI for MCP
              3. Step 3: Use with Gemini CLI
            2. Available MCP Tools
              1. 1. get_weather
              2. 2. get_weather_batch
              3. 3. check_api_health
            3. Testing
              1. API Endpoints
                1. Screen Recording Instructions
                  1. Project Files
                    1. Documentation
                      1. Notes
                        1. Troubleshooting

                          MCP directory API

                          We provide all the information about MCP servers via our MCP API.

                          curl -X GET 'https://glama.ai/api/mcp/v1/servers/Raffay0177/MCP-server-using-FAST-MCP'

                          If you have feedback or need assistance with the MCP directory API, please join our Discord server