"""Fault injection service implementation."""
import logging
import uuid
from typing import Dict, Optional
logger = logging.getLogger(__name__)
class FaultService:
"""
Service for injecting and cleaning up faults.
This is a stub implementation. In production, this would integrate
with chaos engineering tools like Chaos Mesh, Litmus, etc.
"""
def __init__(self):
"""Initialize fault service."""
self.active_faults: Dict[str, Dict] = {}
async def inject(
self, fault_type: str, params: Dict[str, str], run_id: str
) -> tuple[bool, str, str]:
"""
Inject a fault into the system.
Args:
fault_type: Type of fault (pod_kill, network_delay, etc.)
params: Fault-specific parameters
run_id: Scenario run identifier
Returns:
Tuple of (success, fault_id, message)
"""
fault_id = f"fault-{uuid.uuid4().hex[:8]}"
logger.info(
f"Injecting fault: type={fault_type}, params={params}, run_id={run_id}"
)
# Store fault info
self.active_faults[fault_id] = {
"type": fault_type,
"params": params,
"run_id": run_id,
}
# In production, integrate with chaos engineering platform
# Example integrations:
# - Chaos Mesh: Create ChaosExperiment CRD
# - Litmus: Create ChaosEngine
# - Gremlin: Call Gremlin API
message = f"Fault {fault_type} injected successfully (stub)"
logger.info(f"Fault {fault_id}: {message}")
return True, fault_id, message
async def cleanup(self, fault_id: str, run_id: str) -> tuple[bool, str]:
"""
Clean up an injected fault.
Args:
fault_id: Fault identifier
run_id: Scenario run identifier
Returns:
Tuple of (success, message)
"""
logger.info(f"Cleaning up fault: fault_id={fault_id}, run_id={run_id}")
if fault_id not in self.active_faults:
message = f"Fault {fault_id} not found"
logger.warning(message)
return False, message
fault_info = self.active_faults.pop(fault_id)
# In production, integrate with chaos engineering platform
# Example: Delete ChaosExperiment, stop attack, etc.
message = f"Fault {fault_info['type']} cleaned up successfully (stub)"
logger.info(message)
return True, message