Skip to main content
Glama

watsonx MCP Server

MCP server for IBM watsonx.ai integration with Claude Code. Enables Claude to delegate tasks to IBM's foundation models (Granite, Llama, Mistral, etc.).

Features

  • Text Generation - Generate text using watsonx.ai foundation models

  • Chat - Have conversations with watsonx.ai chat models

  • Embeddings - Generate text embeddings

  • Model Listing - List all available foundation models

Available Tools

Tool

Description

watsonx_generate

Generate text using watsonx.ai models

watsonx_chat

Chat with watsonx.ai models

watsonx_embeddings

Generate text embeddings

watsonx_list_models

List available models

Setup

1. Install Dependencies

cd ~/watsonx-mcp-server npm install

2. Configure Environment

Set these environment variables:

WATSONX_API_KEY=your-ibm-cloud-api-key WATSONX_URL=https://us-south.ml.cloud.ibm.com WATSONX_SPACE_ID=your-deployment-space-id # Recommended: deployment space WATSONX_PROJECT_ID=your-project-id # Alternative: project ID

Note: Either WATSONX_SPACE_ID or WATSONX_PROJECT_ID is required for text generation, embeddings, and chat. Deployment spaces are recommended as they have Watson Machine Learning (WML) pre-configured.

3. Add to Claude Code

The MCP server is already configured in ~/.claude.json:

{ "mcpServers": { "watsonx": { "type": "stdio", "command": "node", "args": ["/Users/matthewkarsten/watsonx-mcp-server/index.js"], "env": { "WATSONX_API_KEY": "your-api-key", "WATSONX_URL": "https://us-south.ml.cloud.ibm.com", "WATSONX_SPACE_ID": "your-deployment-space-id" } } } }

Usage

Once configured, Claude can use watsonx.ai tools:

User: Use watsonx to generate a haiku about coding Claude: [Uses watsonx_generate tool] Result: Code flows like water Bugs arise, then disappear Programs come alive

Available Models

Some notable models available:

  • ibm/granite-3-3-8b-instruct - IBM Granite 3.3 8B (recommended)

  • ibm/granite-13b-chat-v2 - IBM Granite chat model

  • ibm/granite-3-8b-instruct - Granite 3 instruct model

  • meta-llama/llama-3-70b-instruct - Meta's Llama 3 70B

  • mistralai/mistral-large - Mistral AI large model

  • ibm/slate-125m-english-rtrvr-v2 - Embedding model

Use watsonx_list_models to see all available models.

Architecture

Claude Code (Opus 4.5) │ └──▶ watsonx MCP Server │ └──▶ IBM watsonx.ai API │ ├── Granite Models ├── Llama Models ├── Mistral Models └── Embedding Models

Two-Agent System

This enables a two-agent architecture where:

  1. Claude (Opus 4.5) - Primary reasoning agent, handles complex tasks

  2. watsonx.ai - Secondary agent for specific workloads

Claude can delegate tasks to watsonx.ai when:

  • IBM-specific model capabilities are needed

  • Running batch inference on enterprise data

  • Using specialized Granite models

  • Generating embeddings for RAG pipelines

IBM Cloud Resources

This MCP server uses:

  • Service: watsonx.ai Studio (data-science-experience)

  • Plan: Lite (free tier)

  • Region: us-south

Create your own watsonx.ai project and deployment space in IBM Cloud.

Integration with IBM Z MCP Server

This watsonx MCP server works alongside the IBM Z MCP server:

Claude Code (Opus 4.5) │ ├──▶ watsonx MCP Server │ └── Text generation, embeddings, chat │ └──▶ ibmz MCP Server └── Key Protect HSM, z/OS Connect

Demo scripts in the ibmz-mcp-server:

  • demo-full-stack.js - Full 5-service pipeline

  • demo-rag.js - RAG with watsonx embeddings + Granite

Document Analyzer

The document analyzer (document-analyzer.js) provides powerful tools for analyzing your external drive data using watsonx.ai:

Commands

# View document catalog (9,168 documents) node document-analyzer.js catalog # Summarize a document node document-analyzer.js summarize 1002519.txt # Analyze document type, topics, entities node document-analyzer.js analyze 1002519.txt # Ask questions about a document node document-analyzer.js question 1002519.txt 'What AWS credentials are needed?' # Generate embeddings for documents node document-analyzer.js embed # Semantic search across documents node document-analyzer.js search 'IBM Cloud infrastructure'

Features

  • Summarization: Generate concise summaries of any document

  • Analysis: Extract document type, topics, entities, and sentiment

  • Q&A: Ask natural language questions about document content

  • Embeddings: Generate 768-dimensional vectors for semantic search

  • Semantic Search: Find similar documents using vector similarity

Demo

Run the full demo:

./demo-external-drive.sh

Embedding Index & RAG

The embedding-index.js tool provides semantic search and RAG (Retrieval Augmented Generation):

# Build an embedding index (50 documents) node embedding-index.js build 50 # Semantic search node embedding-index.js search 'cloud infrastructure' # RAG query - retrieves relevant docs and generates answer node embedding-index.js rag 'How do I set up AWS for Satellite?' # Show index statistics node embedding-index.js stats

Batch Processor

The batch-processor.js tool processes multiple documents at once:

# Classify documents into categories node batch-processor.js classify 20 # Extract topics from documents node batch-processor.js topics 15 # Generate one-line summaries node batch-processor.js summarize 10 # Full analysis (classify + topics + summary) node batch-processor.js full 10

Categories: technical, business, creative, personal, code, legal, marketing, educational, other

Files

  • index.js - MCP server implementation

  • document-analyzer.js - Document analysis CLI tool

  • embedding-index.js - Embedding index and RAG tool

  • batch-processor.js - Batch document processor

  • demo-external-drive.sh - Demo script

  • package.json - Dependencies

  • README.md - This file

Author

Matthew Karsten

License

MIT

-
security - not tested
F
license - not found
-
quality - not tested

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/PurpleSquirrelMedia/watsonx-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server