Skip to main content
Glama
PulkitXChadha

Databricks MCP Server

architecture.mdβ€’9.62 kB
# Architecture & Design This document provides an overview of the Databricks MCP Server architecture and design principles. ## πŸ—οΈ System Architecture ### High-Level Overview ``` β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ MCP Client β”‚ β”‚ FastAPI App β”‚ β”‚ Databricks β”‚ β”‚ (Claude, │◄──►│ (MCP Server) │◄──►│ SDK β”‚ β”‚ etc.) β”‚ β”‚ β”‚ β”‚ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β–Ό β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ MCP Tools β”‚ β”‚ (100+ tools) β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ ``` ### Core Components 1. **FastAPI Application**: Main server that handles HTTP requests and MCP protocol 2. **MCP Tools**: Tool implementations that wrap Databricks SDK functionality 3. **Databricks SDK**: Official Python SDK for Databricks services 4. **Authentication Layer**: Handles Databricks authentication and token management ## πŸ”§ Tool Implementation Pattern ### Standard Tool Structure ```python def tool_name(param1: str, param2: int = None) -> dict: """ Tool description. Args: param1: Description of parameter 1 param2: Description of parameter 2 (optional) Returns: Standard response format with success/error indicators """ try: # Initialize Databricks client client = WorkspaceClient() # Perform operation using SDK result = client.service.operation(param1, param2) # Return standardized response return { "success": True, "data": result, "count": len(result) if hasattr(result, '__len__') else 1 } except Exception as e: # Handle errors consistently return { "success": False, "error": str(e), "error_code": get_error_code(e) } ``` ### Response Format Standardization All tools return responses in a consistent format: ```python # Success Response { "success": True, "data": {...}, # Actual result data "count": 5, # Number of items (if applicable) "message": "Success" # Optional success message } # Error Response { "success": False, "error": "Error message", # Human-readable error "error_code": "ERROR_CODE", # Machine-readable error code "details": {...} # Additional error details } ``` ## πŸ” Authentication Architecture ### Authentication Flow 1. **Environment Variables**: Server reads `DATABRICKS_HOST` and `DATABRICKS_TOKEN` 2. **Client Initialization**: `WorkspaceClient()` automatically uses configured credentials 3. **Token Validation**: SDK validates token with Databricks workspace 4. **Permission Checking**: Each tool respects Unity Catalog and workspace permissions ### Supported Authentication Methods - **Personal Access Token**: `DATABRICKS_HOST` + `DATABRICKS_TOKEN` - **CLI Profile**: `DATABRICKS_CONFIG_PROFILE` - **Service Principal**: When deployed to Databricks Apps ## πŸ“Š Tool Categories ### 1. Unity Catalog Tools - **Purpose**: Data catalog management and discovery - **Implementation**: Direct SDK calls to Unity Catalog APIs - **Status**: βœ… Complete (15+ tools) ### 2. SQL Operations - **Purpose**: Warehouse management and query execution - **Implementation**: SDK statement execution and warehouse APIs - **Status**: βœ… Complete (10+ tools) ### 3. Compute Management - **Purpose**: Cluster and instance pool management - **Implementation**: SDK cluster and compute APIs - **Status**: πŸ”„ In Progress (20+ tools) ### 4. Jobs & Workflows - **Purpose**: Job management and execution - **Implementation**: SDK jobs and pipelines APIs - **Status**: βœ… Complete (15+ tools) ### 5. File Management - **Purpose**: DBFS and workspace file operations - **Implementation**: SDK workspace and DBFS APIs - **Status**: βœ… Complete (12+ tools) ### 6. Machine Learning - **Purpose**: Model serving and ML operations - **Implementation**: SDK ML and serving APIs - **Status**: πŸ”„ In Progress (25+ tools) ## πŸš€ Performance Considerations ### Optimization Strategies 1. **Lazy Loading**: Detailed information only fetched when requested 2. **Pagination**: Large result sets handled with pagination 3. **Caching**: Frequently accessed metadata cached when possible 4. **Async Operations**: Long-running operations support async patterns 5. **Batch Operations**: Multiple operations batched where possible ### Rate Limiting - **API Limits**: Respect Databricks API rate limits - **Backoff Strategy**: Exponential backoff for retries - **Request Batching**: Group related API calls when possible ## πŸ›‘οΈ Security & Permissions ### Security Model 1. **Authentication**: All requests authenticated via Databricks 2. **Authorization**: Tools respect Unity Catalog access controls 3. **Audit Logging**: All operations logged for compliance 4. **Error Masking**: Sensitive information not exposed in errors ### Permission Handling ```python def secure_tool_operation(resource_id: str): try: client = WorkspaceClient() # Check if user has access to resource if not has_permission(client, resource_id): return { "success": False, "error": "Permission denied", "error_code": "PERMISSION_DENIED" } # Perform operation result = perform_operation(client, resource_id) return {"success": True, "data": result} except PermissionDenied: return { "success": False, "error": "Insufficient permissions", "error_code": "PERMISSION_DENIED" } ``` ## πŸ” Error Handling Strategy ### Error Categories 1. **Authentication Errors**: Invalid or expired credentials 2. **Permission Errors**: Insufficient access rights 3. **Validation Errors**: Invalid input parameters 4. **Resource Errors**: Resources not found or unavailable 5. **System Errors**: Internal server or Databricks errors ### Error Handling Pattern ```python def robust_tool_operation(params): try: # Validate parameters validate_params(params) # Perform operation result = perform_operation(params) return {"success": True, "data": result} except ValidationError as e: return { "success": False, "error": f"Invalid parameters: {e}", "error_code": "VALIDATION_ERROR" } except NotFound as e: return { "success": False, "error": f"Resource not found: {e}", "error_code": "NOT_FOUND" } except PermissionDenied as e: return { "success": False, "error": f"Permission denied: {e}", "error_code": "PERMISSION_DENIED" } except Exception as e: # Log unexpected errors logger.error(f"Unexpected error in tool_operation: {e}") return { "success": False, "error": "Internal server error", "error_code": "INTERNAL_ERROR" } ``` ## πŸ§ͺ Testing Architecture ### Testing Strategy 1. **Unit Tests**: Individual tool function testing 2. **Integration Tests**: End-to-end workflow testing 3. **Mock Testing**: Databricks API responses mocked 4. **Performance Testing**: Load and stress testing ### Test Structure ```python # Example test structure def test_describe_uc_catalog(): # Arrange mock_client = MockWorkspaceClient() # Act result = describe_uc_catalog("hive_metastore") # Assert assert result["success"] == True assert "catalogs" in result assert result["count"] >= 0 ``` ## πŸ“ˆ Scalability Considerations ### Horizontal Scaling - **Stateless Design**: Server can be scaled horizontally - **Load Balancing**: Multiple instances behind load balancer - **Database Independence**: No persistent state to manage ### Resource Management - **Connection Pooling**: Efficient Databricks client management - **Memory Management**: Large result sets handled efficiently - **Timeout Handling**: Configurable timeouts for long operations ## πŸ”„ Deployment Architecture ### Deployment Options 1. **Local Development**: Direct Python execution 2. **Docker**: Containerized deployment 3. **Cloud Platforms**: Google Cloud Run, AWS App Runner 4. **Databricks Apps**: Native Databricks deployment ### Environment Configuration ```bash # Required DATABRICKS_HOST=https://workspace.cloud.databricks.com DATABRICKS_TOKEN=your-token # Optional PORT=8000 HOST=0.0.0.0 LOG_LEVEL=INFO ``` ## πŸ“š Related Documentation - **[Getting Started](getting-started.md)** - Setup and configuration - **[Core Tools](core-tools.md)** - Tool categories and usage - **[API Reference](api-reference.md)** - Complete tool reference - **[Testing](testing.md)** - Testing strategies and examples --- **This architecture provides a solid foundation for a scalable, secure, and maintainable Databricks MCP Server.**

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/PulkitXChadha/awesome-databricks-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server