Skip to main content
Glama

Faulkner DB - Temporal Knowledge Graph System

License: MIT Python Version Docker npm version CI Status GitHub stars

Faulkner DB empowers software teams to capture, query, and analyze architectural decisions, implementation patterns, and failures as they evolve over time. Built on FalkorDB (CPU-friendly graph database) with hybrid search capabilities, it provides unparalleled insights into your project's history, fostering better decision-making and reducing technical debt.

🎯 Value Proposition

  • Improved Decision Tracking - Capture the rationale behind architectural choices and their impact over time

  • Enhanced Collaboration - Facilitate knowledge sharing and alignment across teams

  • Reduced Technical Debt - Identify and address problematic patterns early

  • Faster Onboarding - Accelerate learning for new team members with comprehensive project history

  • AI-Ready Knowledge Base - Structure knowledge for AI-powered development tools (Claude Code/Desktop)

✨ Key Features

  • Temporal Knowledge Graph - Track changes to decisions and patterns over time

  • Hybrid Search - Graph traversal + vector embeddings + CrossEncoder reranking (<2s queries)

  • Gap Detection - NetworkX-based structural analysis to identify knowledge gaps

  • MCP Integration - 7 tools for seamless Claude Desktop/Code integration

  • Docker Deployment - One-command startup with auto-restart support

  • CPU-Friendly - Built on FalkorDB, no GPU required (gaming-friendly memory footprint)

πŸ“– Documentation

πŸš€ Quick Start

# Configure Claude Desktop/Code automatically npx faulkner-db-config setup # Clone and start the stack git clone https://github.com/platano78/faulkner-db.git cd faulkner-db/docker docker-compose up -d # Restart Claude Desktop/Code

Option 2: Manual Setup

1. Start FalkorDB Stack

git clone https://github.com/platano78/faulkner-db.git cd faulkner-db/docker # Copy environment template cp .env.example .env # Edit .env and set POSTGRES_PASSWORD # Start services docker-compose up -d

2. Configure Claude (Manual)

Add to ~/.config/Claude/claude_desktop_config.json (Linux) or equivalent:

{ "mcpServers": { "faulkner-db": { "command": "python3", "args": ["-m", "mcp_server.server"], "env": { "PYTHONPATH": "/path/to/faulkner-db", "FALKORDB_HOST": "localhost", "FALKORDB_PORT": "6379" } } } }

3. Access Services

πŸ—οΈ Architecture

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ Claude Code/ β”‚ β”‚ Faulkner DB β”‚ β”‚ FalkorDB β”‚ β”‚ Desktop │───▢│ (MCP Server) │───▢│ (Graph DB) β”‚ β”‚ β”‚ β”‚ Temporal Logic β”‚ β”‚ CPU-Friendly β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ β–Ό β–Ό β–Ό β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ 7 MCP Tools β”‚ β”‚ Hybrid Search β”‚ β”‚ PostgreSQL β”‚ β”‚ - add_decision β”‚ β”‚ Graph + Vector β”‚ β”‚ (Metadata Store) β”‚ β”‚ - query_decisions β”‚ β”‚ + Reranking β”‚ β”‚ β”‚ β”‚ - detect_gaps β”‚ β”‚ β”‚ β”‚ β”‚ β”‚ - get_timeline β”‚ β”‚ β”‚ β”‚ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

πŸ“š MCP Tools Documentation

1. add_decision

Record architectural decision with full context and rationale.

{ "description": "Use FalkorDB for temporal graphs", "rationale": "CPU-friendly, Redis-compatible, excellent temporal support", "alternatives": ["Neo4j", "ArangoDB"], "related_to": [] }

2. query_decisions

Hybrid search for decisions by topic/timeframe.

{ "query": "authentication decisions", "timeframe": { "start": "2024-01-01", "end": "2024-12-31" } }

3. add_pattern

Store successful implementation pattern.

{ "name": "CQRS Pattern", "implementation": "Separate read/write models with event sourcing", "use_cases": ["High-scale systems", "Event-driven architecture"], "context": "Microservices with async communication" }

4. add_failure

Document what didn't work and lessons learned.

{ "attempt": "Used RabbitMQ with 50+ queues", "reason_failed": "Performance degradation under load", "lesson_learned": "Use Kafka for high-throughput streaming", "alternative_solution": "Migrated to Kafka with topic partitioning" }

Graph traversal to discover related knowledge nodes.

{ "node_id": "D-abc123", "depth": 2 }

6. detect_gaps

Run NetworkX structural analysis to identify knowledge gaps (>85% accuracy).

{}

7. get_timeline

Temporal view showing how understanding evolved over time.

{ "topic": "Authentication System", "start_date": "2023-01-01", "end_date": "2024-12-31" }

πŸ› οΈ Technical Stack

Component

Technology

Graph Database

FalkorDB (CPU-only)

Metadata Store

PostgreSQL

Embeddings

sentence-transformers (all-MiniLM-L6-v2)

Reranking

cross-encoder/ms-marco-MiniLM-L-6-v2

Graph Analysis

NetworkX

MCP Server

Python 3.8+

Deployment

Docker Compose

⚑ Performance

  • Query Time: <2s (hybrid search with reranking)

  • Accuracy: 90%+ on decision queries

  • Gap Detection: >85% accuracy

  • Memory: Gaming-friendly (FalkorDB: 2GB, PostgreSQL: 1GB)

  • Scalability: Tested with 10,000+ nodes

πŸ”§ Configuration

Environment Variables

Create docker/.env from .env.example:

# FalkorDB Configuration FALKORDB_HOST=falkordb FALKORDB_PORT=6379 FALKORDB_MEMORY_LIMIT=2gb # PostgreSQL Configuration POSTGRES_HOST=postgres POSTGRES_PORT=5432 POSTGRES_USER=graphiti POSTGRES_PASSWORD=YOUR_SECURE_PASSWORD POSTGRES_DB=graphiti

MCP Server Configuration

The MCP server automatically connects to FalkorDB and PostgreSQL using environment variables. No additional configuration needed.

πŸ› Troubleshooting

Docker containers not starting

# Check container status docker-compose ps # View logs docker-compose logs -f # Restart services docker-compose restart

FalkorDB connection errors

  • Verify FalkorDB is running: docker-compose ps

  • Check port 6379 is not in use: lsof -i :6379

  • Review FalkorDB logs: docker-compose logs falkordb

MCP server not detected in Claude

  1. Verify configuration path matches your OS (see npm package docs)

  2. Restart Claude Desktop/Code after config changes

  3. Check Python path in MCP config is correct

  4. Ensure Docker stack is running

Data persistence issues

  • Verify docker/data/ directory has correct permissions

  • Check FALKORDB_PERSISTENCE=true in .env

  • Backup data: docker-compose exec falkordb redis-cli BGSAVE

🀝 Contributing

We welcome contributions! Please follow these guidelines:

  1. Fork the repository and create a feature branch

  2. Write tests for new features (pytest)

  3. Follow code style (PEP 8 for Python)

  4. Document changes in code and README

  5. Submit pull request with clear description

Development Setup

# Clone repository git clone https://github.com/platano78/faulkner-db.git cd faulkner-db # Install dependencies pip install -r requirements.txt # Run tests pytest tests/ -v # Run with coverage pytest tests/ --cov=core --cov=mcp_server

See CONTRIBUTING.md for detailed guidelines.

πŸ“„ License

MIT License - see LICENSE for details.

πŸ—ΊοΈ Roadmap

  • Phase 1: Core Knowledge Graph

  • Phase 2: Hybrid Search

  • Phase 3: Gap Detection

  • Phase 4: MCP Server Integration

  • Phase 5: Docker Deployment

  • Phase 6: Testing & Validation

  • Phase 7: Advanced Analytics Dashboard

  • Phase 8: Multi-tenant Support

  • Phase 9: Cloud Deployment Options

πŸ“ž Support

πŸ™ Acknowledgments

Built with:


Made with ❀️ for software teams who value architectural knowledge

-
security - not tested
A
license - permissive license
-
quality - not tested

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Platano78/faulkner-db'

If you have feedback or need assistance with the MCP directory API, please join our Discord server