Skip to main content
Glama

Orchestrator MCP

integration.ts•4.75 kB
/** * Context Engine Integration * * Integrates the POC context engine with the existing MCP server * by adding new tools and enhancing the AI orchestration layer */ import type { AIClient } from '../ai/client.js'; import type { OrchestratorManager } from '../orchestrator/manager.js'; import { INTELLIGENCE_ANALYSIS_WORKFLOW } from './workflows.js'; import { createLogger } from '../utils/logging.js'; const logger = createLogger('context-integration'); /** * Context engine integration that adds large context capabilities */ export class ContextEngineIntegration { constructor( private aiClient: AIClient, private orchestrator: OrchestratorManager ) { // Context engine integration for intelligence analysis } /** * Get context engine tools for MCP server registration * NOTE: These tools are not currently exposed to clients - they're handled internally by ai_process */ getContextTools() { // Context engine tools are integrated into ai_process workflow // No separate tools exposed to avoid overwhelming LLM with too many options return []; // Previously defined but not exposed: // - analyze_intelligence_layer (now handled via ai_process requests) } /** * Handle context engine tool calls * NOTE: Context engine capabilities are now integrated into ai_process workflow */ async handleToolCall(toolName: string, parameters: any): Promise<any> { logger.info('Context engine tool call (deprecated)', { toolName, parameters }); // Context engine tools are no longer exposed separately // All functionality is available through ai_process requests throw new Error(`Context engine tools are integrated into ai_process. Use ai_process instead of ${toolName}`); } /** * Handle intelligence layer analysis using workflow */ private async handleIntelligenceAnalysis(parameters: any) { // Execute the intelligence analysis workflow const workflowResult = await this.executeWorkflow( 'intelligence_layer_analysis', INTELLIGENCE_ANALYSIS_WORKFLOW, { working_directory: process.cwd(), original_query: 'Show me the current intelligence layer implementation, specifically the codebase analysis, quality assessment, and any existing context management or indexing capabilities. I want to understand what\'s already implemented vs what\'s placeholder code.', timestamp: Date.now() } ); return { type: 'text', text: this.formatWorkflowResult(workflowResult, 'Intelligence Layer Analysis') }; } /** * Execute a workflow using the existing workflow engine */ private async executeWorkflow( workflowId: string, workflowDefinition: any, variables: Record<string, any> ) { // This would integrate with your existing workflow engine // For now, we'll simulate the workflow execution logger.info('Executing context workflow', { workflowId, variables }); // In a real implementation, this would: // 1. Use your WorkflowEngine to execute the workflow // 2. Handle step-by-step execution with proper error handling // 3. Return the final workflow result // For POC, we'll simulate a successful workflow execution return { success: true, workflowId, steps: workflowDefinition.steps.length, executionTime: 45000, result: { summary: `Executed ${workflowId} workflow successfully`, confidence: 0.85, insights: [ 'Workflow completed with large context analysis', 'Results stored in memory for future reference', 'Analysis used Gemini 1.5 Pro with 800K+ token context' ] } }; } /** * Format workflow result for display */ private formatWorkflowResult(result: any, title: string): string { return `# ${title} ## Execution Summary - **Status:** ${result.success ? 'Success' : 'Failed'} - **Steps Executed:** ${result.steps} - **Execution Time:** ${(result.executionTime / 1000).toFixed(1)}s - **Workflow ID:** ${result.workflowId} ## Analysis Results ${result.result.summary} **Confidence:** ${(result.result.confidence * 100).toFixed(1)}% ## Key Insights ${result.result.insights.map((insight: string) => `- ${insight}`).join('\n')} --- *Analysis powered by large context AI workflows with Gemini 1.5 Pro* `; } /** * Enable Gemini large context in AI client configuration */ static configureGeminiLargeContext(): Partial<any> { return { // Configuration to enable Gemini with large context model: 'google/gemini-pro-1.5', maxTokens: 1000000, // 1M token context window temperature: 0.1, // Lower temperature for more consistent analysis }; } }

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Phoenixrr2113/Orchestrator-MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server