Skip to main content
Glama
PedroDnT

MCP Deep Web Research Server

parallel_search

Execute multiple Google searches simultaneously to accelerate web research by processing queries in parallel.

Instructions

Perform multiple Google searches in parallel

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
queriesYesArray of search queries to execute in parallel
maxParallelNoMaximum number of parallel searches

Implementation Reference

  • src/index.ts:125-147 (registration)
    Registration of the 'parallel_search' tool in the MCP server, including name, description, and input schema definition.
    { name: 'parallel_search', description: 'Perform multiple Google searches in parallel', inputSchema: { type: 'object', properties: { queries: { type: 'array', items: { type: 'string' }, description: 'Array of search queries to execute in parallel' }, maxParallel: { type: 'number', description: 'Maximum number of parallel searches', minimum: 1, maximum: 5 } }, required: ['queries'] } },
  • MCP server handler for 'parallel_search' tool call: validates input, limits queries, delegates to DeepResearch.parallelSearch.parallelSearch(), and returns JSON result.
    case 'parallel_search': { const args = request.params.arguments as unknown as ParallelSearchArgs; if (!args?.queries) { throw new McpError(ErrorCode.InvalidParams, 'Queries array is required'); } const limitedQueries = args.queries.slice(0, 5); console.log(`Starting parallel search with ${limitedQueries.length} queries`); const result = await deepResearch.parallelSearch.parallelSearch(limitedQueries); return { content: [ { type: 'text', text: JSON.stringify(result, null, 2) } ] }; }
  • Core handler function: performs parallel Google searches by launching browser contexts, executing searches on google.com, extracting results with relevance scoring, saving to files, and returning structured results with summary.
    public async parallelSearch(queries: string[]): Promise<{ results: ParallelSearchResult[]; summary: { totalQueries: number; successful: number; failed: number; totalExecutionTime?: number; averageExecutionTime?: number; }; }> { const startTime = this.options.includeTimings ? Date.now() : undefined; await this.initialize(); const results: ParallelSearchResult[] = []; const chunks: string[][] = []; // Split queries into chunks of maxParallel size for (let i = 0; i < queries.length; i += this.options.maxParallel) { chunks.push(queries.slice(i, i + this.options.maxParallel)); } // Process each chunk for (const chunk of chunks) { const chunkPromises = chunk.map((query, index) => { const searchId = `search_${Date.now()}_${index + 1}_of_${chunk.length}`; // Stagger the searches return new Promise<ParallelSearchResult>(async (resolve) => { await new Promise(r => setTimeout(r, index * this.options.delayBetweenSearches)); const result = await this.singleSearch( this.contexts[index % this.contexts.length], query, searchId ); resolve(result); }); }); const chunkResults = await Promise.all(chunkPromises); results.push(...chunkResults); // Add a small delay between chunks if (chunks.indexOf(chunk) < chunks.length - 1) { await new Promise(r => setTimeout(r, 1000)); } } const endTime = Date.now(); const successful = results.filter(r => !r.error).length; const failed = results.filter(r => r.error).length; const summary = { totalQueries: queries.length, successful, failed, ...(this.options.includeTimings && startTime ? { totalExecutionTime: endTime - startTime, averageExecutionTime: Math.round((endTime - startTime) / queries.length) } : {}) }; // Add individual execution times to results if timing is enabled const timedResults = this.options.includeTimings ? results.map(r => ({ ...r, executionTime: r.executionTime || 0 })) : results; return { results: timedResults, summary }; }
  • TypeScript interface defining input arguments for parallel_search tool.
    interface ParallelSearchArgs { queries: string[]; maxParallel?: number; }
  • Type definitions for SearchResult (single search result) and ParallelSearchResult (result per query), used as output schema for parallel_search.
    export interface SearchResult { title: string; url: string; snippet: string; relevanceScore: number; } export interface ParallelSearchResult { searchId: string; query: string; results: SearchResult[]; error?: string; executionTime?: number; }
Install Server

Other Tools

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/PedroDnT/mcp-DEEPwebresearch'

If you have feedback or need assistance with the MCP directory API, please join our Discord server