Skip to main content
Glama
text_image_unwarping.md11.4 kB
--- comments: true --- # 文本图像矫正模块使用教程 ## 一、概述 文本图像矫正的主要目的是针对图像进行几何变换,以纠正图像中的文档扭曲、倾斜、透视变形等问题,以供后续的文本识别进行更加准确。 ## 二、支持模型列表 > 推理耗时仅包含模型推理耗时,不包含前后处理耗时。 <table> <thead> <tr> <th>模型</th><th>模型下载链接</th> <th>CER </th> <th>GPU推理耗时(ms)<br/>[常规模式 / 高性能模式]</th> <th>CPU推理耗时(ms)<br/>[常规模式 / 高性能模式]</th> <th>模型存储大小(MB)</th> <th>介绍</th> </tr> </thead> <tbody> <tr> <td>UVDoc</td> <td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/UVDoc_infer.tar">推理模型</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/UVDoc_pretrained.pdparams">训练模型</a></td> <td>0.179</td> <td>19.05 / 19.05</td> <td>- / 869.82</td> <td>30.3</td> <td>高精度文本图像矫正模型</td> </tr> </tbody> </table> <strong>测试环境说明:</strong> <ul> <li><b>性能测试环境</b> <ul> <li><strong>测试数据集:</strong><a href="https://www3.cs.stonybrook.edu/~cvl/docunet.html">DocUNet benchmark</a>数据集。</li> <li><strong>硬件配置:</strong> <ul> <li>GPU:NVIDIA Tesla T4</li> <li>CPU:Intel Xeon Gold 6271C @ 2.60GHz</li> </ul> </li> <li><strong>软件环境:</strong> <ul> <li>Ubuntu 20.04 / CUDA 11.8 / cuDNN 8.9 / TensorRT 8.6.1.6</li> <li>paddlepaddle 3.0.0 / paddleocr 3.0.3</li> </ul> </li> </ul> </li> <li><b>推理模式说明</b></li> </ul> <table border="1"> <thead> <tr> <th>模式</th> <th>GPU配置</th> <th>CPU配置</th> <th>加速技术组合</th> </tr> </thead> <tbody> <tr> <td>常规模式</td> <td>FP32精度 / 无TRT加速</td> <td>FP32精度 / 8线程</td> <td>PaddleInference</td> </tr> <tr> <td>高性能模式</td> <td>选择先验精度类型和加速策略的最优组合</td> <td>FP32精度 / 8线程</td> <td>选择先验最优后端(Paddle/OpenVINO/TRT等)</td> </tr> </tbody> </table> ## 三、快速开始 > ❗ 在快速开始前,请先安装 PaddleOCR 的 wheel 包,详细请参考 [安装教程](../installation.md)。 使用一行命令即可快速体验: ```bash paddleocr text_image_unwarping -i https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/doc_test.jpg ``` <b>注:</b>PaddleOCR 官方模型默认从 HuggingFace 获取,如运行环境访问 HuggingFace 不便,可通过环境变量修改模型源为 BOS:`PADDLE_PDX_MODEL_SOURCE="BOS"`,未来将支持更多主流模型源; 您也可以将图像矫正的模块中的模型推理集成到您的项目中。运行以下代码前,请您下载[示例图片](https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/doc_test.jpg)到本地。 ```python from paddleocr import TextImageUnwarping model = TextImageUnwarping(model_name="UVDoc") output = model.predict("doc_test.jpg", batch_size=1) for res in output: res.print() res.save_to_img(save_path="./output/") res.save_to_json(save_path="./output/res.json") ``` 运行后,得到的结果为: ```bash {'res': {'input_path': 'doc_test.jpg', 'page_index': None, 'doctr_img': '...'}} ``` 运行结果参数含义如下: - `input_path`:表示输入待矫正图像的路径 - `doctr_img`:表示矫正后的图像结果,由于数据过多不便于直接print,所以此处用`...`替换,可以通过`res.save_to_img()`将预测结果保存为图片,通过`res.save_to_json()`将预测结果保存为json文件。 可视化图片如下: <img src="https://raw.githubusercontent.com/cuicheng01/PaddleX_doc_images/refs/heads/main/images/modules/image_unwarp/doc_test_res.jpg"> 相关方法、参数等说明如下: * `TextImageUnwarping`实例化图像矫正模型(此处以`UVDoc`为例),具体说明如下: <table> <thead> <tr> <th>参数</th> <th>参数说明</th> <th>参数类型</th> <th>默认值</th> </tr> </thead> <tbody> <tr> <td><code>model_name</code></td> <td>模型名称。如果设置为<code>None</code>,则使用<code>UVDoc</code>。</td> <td><code>str|None</code></td> <td><code>None</code></td> </tr> <tr> <td><code>model_dir</code></td> <td>模型存储路径。</td> <td><code>str|None</code></td> <td><code>None</code></td> </tr> <tr> <td><code>device</code></td> <td>用于推理的设备。<br/> <b>例如:</b><code>"cpu"</code>、<code>"gpu"</code>、<code>"npu"</code>、<code>"gpu:0"</code>、<code>"gpu:0,1"</code>。<br/> 如指定多个设备,将进行并行推理。<br/> 默认情况下,优先使用 GPU 0;若不可用则使用 CPU。 </td> <td><code>str|None</code></td> <td><code>None</code></td> </tr> <tr> <td><code>enable_hpi</code></td> <td>是否启用高性能推理。</td> <td><code>bool</code></td> <td><code>False</code></td> </tr> <tr> <td><code>use_tensorrt</code></td> <td>是否启用 Paddle Inference 的 TensorRT 子图引擎。如果模型不支持通过 TensorRT 加速,即使设置了此标志,也不会使用加速。<br/> 对于 CUDA 11.8 版本的飞桨,兼容的 TensorRT 版本为 8.x(x>=6),建议安装 TensorRT 8.6.1.6。<br/> </td> <td><code>bool</code></td> <td><code>False</code></td> </tr> <tr> <td><code>precision</code></td> <td>当使用 Paddle Inference 的 TensorRT 子图引擎时设置的计算精度。<br/><b>可选项:</b><code>"fp32"</code>、<code>"fp16"</code>。</td> <td><code>str</code></td> <td><code>"fp32"</code></td> </tr> <tr> <td><code>enable_mkldnn</code></td> <td> 是否启用 MKL-DNN 加速推理。如果 MKL-DNN 不可用或模型不支持通过 MKL-DNN 加速,即使设置了此标志,也不会使用加速。<br/> </td> <td><code>bool</code></td> <td><code>True</code></td> </tr> <tr> <td><code>mkldnn_cache_capacity</code></td> <td> MKL-DNN 缓存容量。 </td> <td><code>int</code></td> <td><code>10</code></td> </tr> <tr> <td><code>cpu_threads</code></td> <td>在 CPU 上推理时使用的线程数量。</td> <td><code>int</code></td> <td><code>10</code></td> </tr> </tbody> </table> * 调用图像矫正模型的 `predict()` 方法进行推理预测,该方法会返回一个结果列表。另外,本模块还提供了 `predict_iter()` 方法。两者在参数接受和结果返回方面是完全一致的,区别在于 `predict_iter()` 返回的是一个 `generator`,能够逐步处理和获取预测结果,适合处理大型数据集或希望节省内存的场景。可以根据实际需求选择使用这两种方法中的任意一种。`predict()` 方法参数有 `input` 和 `batch_size`,具体说明如下: <table> <thead> <tr> <th>参数</th> <th>参数说明</th> <th>参数类型</th> <th>默认值</th> </tr> </thead> <tr> <td><code>input</code></td> <td>待预测数据,支持多种输入类型,必填。 <ul> <li><b>Python Var</b>:如 <code>numpy.ndarray</code> 表示的图像数据</li> <li><b>str</b>:如图像文件或者PDF文件的本地路径:<code>/root/data/img.jpg</code>;<b>如URL链接</b>,如图像文件或PDF文件的网络URL:<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/img_rot180_demo.jpg">示例</a>;<b>如本地目录</b>,该目录下需包含待预测图像,如本地路径:<code>/root/data/</code>(当前不支持目录中包含PDF文件的预测,PDF文件需要指定到具体文件路径)</li> <li><b>list</b>:列表元素需为上述类型数据,如<code>[numpy.ndarray, numpy.ndarray]</code>,<code>["/root/data/img1.jpg", "/root/data/img2.jpg"]</code>,<code>["/root/data1", "/root/data2"]</code></li> </ul> </td> <td><code>Python Var|str|list</code></td> <td></td> </tr> <tr> <td><code>batch_size</code></td> <td>批大小,可设置为任意正整数。</td> <td><code>int</code></td> <td>1</td> </tr> </table> * 对预测结果进行处理,每个样本的预测结果均为对应的Result对象,且支持打印、保存为图片、保存为`json`文件的操作: <table> <thead> <tr> <th>方法</th> <th>方法说明</th> <th>参数</th> <th>参数类型</th> <th>参数说明</th> <th>默认值</th> </tr> </thead> <tr> <td rowspan = "3"><code>print()</code></td> <td rowspan = "3">打印结果到终端</td> <td><code>format_json</code></td> <td><code>bool</code></td> <td>是否对输出内容进行使用 <code>JSON</code> 缩进格式化</td> <td><code>True</code></td> </tr> <tr> <td><code>indent</code></td> <td><code>int</code></td> <td>指定缩进级别,以美化输出的 <code>JSON</code> 数据,使其更具可读性,仅当 <code>format_json</code> 为 <code>True</code> 时有效</td> <td>4</td> </tr> <tr> <td><code>ensure_ascii</code></td> <td><code>bool</code></td> <td>控制是否将非 <code>ASCII</code> 字符转义为 <code>Unicode</code>。设置为 <code>True</code> 时,所有非 <code>ASCII</code> 字符将被转义;<code>False</code> 则保留原始字符,仅当<code>format_json</code>为<code>True</code>时有效</td> <td><code>False</code></td> </tr> <tr> <td rowspan = "3"><code>save_to_json()</code></td> <td rowspan = "3">将结果保存为json格式的文件</td> <td><code>save_path</code></td> <td><code>str</code></td> <td>保存的文件路径,当为目录时,保存文件命名与输入文件类型命名一致</td> <td>无</td> </tr> <tr> <td><code>indent</code></td> <td><code>int</code></td> <td>指定缩进级别,以美化输出的 <code>JSON</code> 数据,使其更具可读性,仅当 <code>format_json</code> 为 <code>True</code> 时有效</td> <td>4</td> </tr> <tr> <td><code>ensure_ascii</code></td> <td><code>bool</code></td> <td>控制是否将非 <code>ASCII</code> 字符转义为 <code>Unicode</code>。设置为 <code>True</code> 时,所有非 <code>ASCII</code> 字符将被转义;<code>False</code> 则保留原始字符,仅当<code>format_json</code>为<code>True</code>时有效</td> <td><code>False</code></td> </tr> <tr> <td><code>save_to_img()</code></td> <td>将结果保存为图像格式的文件</td> <td><code>save_path</code></td> <td><code>str</code></td> <td>保存的文件路径,当为目录时,保存文件命名与输入文件类型命名一致</td> <td>无</td> </tr> </table> * 此外,也支持通过属性获取带结果的可视化图像和预测结果,具体如下: <table> <thead> <tr> <th>属性</th> <th>属性说明</th> </tr> </thead> <tr> <td rowspan = "1"><code>json</code></td> <td rowspan = "1">获取预测的<code>json</code>格式的结果</td> </tr> <tr> <td rowspan = "1"><code>img</code></td> <td rowspan = "1">获取格式为<code>dict</code>的可视化图像</td> </tr> </table> ## 四、二次开发 当前模块暂时不支持微调训练,仅支持推理集成。关于该模块的微调训练,计划在未来支持。 ## 五、FAQ

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/PaddlePaddle/PaddleOCR'

If you have feedback or need assistance with the MCP directory API, please join our Discord server