Skip to main content
Glama

Local Vector Store MCP Server

by Paddione

Local Vector Store & MCP Server

Lightweight vector store with TF‑IDF search, a small FastAPI HTTP API, and an MCP stdio server. Ingests documents from input/html, input/md, and input/PDF and stores artifacts under data/vector_store.

Usage (Local)

  • Install: pip install -r requirements.txt
  • Ingest data: make ingest (reads input/html, input/md, and input/PDF)
  • Query via CLI: make query Q="security maturity" K=5
  • HTTP API (after deployment below):
    • Health: curl localhost:8000/health
    • Ingest: curl -X POST localhost:8000/ingest
    • Query: curl -X POST localhost:8000/query -H 'Content-Type: application/json' -d '{"query":"security maturity","k":5}'
  • Vector Store Manager (interactive): make manage
    • Examples: status, docs --limit 10, chunks input/PDF/example.pdf --limit 5, search "zero trust" --k 5, ingest, purge, export assets/index_backup.jsonl, help, exit

Deployment

Docker (single container)

  • Build: docker build -t local/vector-mcp:latest .
  • Run: docker run -p 8000:8000 -e AUTO_INGEST=1 -v "$PWD/input:/app/input" -v "$PWD/data:/app/data" local/vector-mcp:latest
    • Visit http://localhost:8000/health or use curl examples above.

Docker Compose

  • Build images: make docker-build
  • Start services: make docker-up (HTTP server on :8000)
  • View logs: make docker-logs
  • Ingest inside container: make docker-ingest
  • Query inside container: make docker-query Q="your query" K=5
  • Stop: make docker-down

MCP Stdio Server

  • Local: make mcp-stdio (runs python -m src.mcp_server)
  • Compose service: make mcp-stdio-up (optional background service); make mcp-stdio-down to remove.

Data Layout

  • Input: input/html/**/*.html, input/md/**/*.md, input/PDF/**/*.pdf
  • Artifacts: data/vector_store/{vectorizer.json,index.jsonl,meta.json}

Notes

  • Ensure input/ contains documents before running ingest.
  • Set AUTO_INGEST=1 to ingest on container start (Docker only).
-
security - not tested
F
license - not found
-
quality - not tested

local-only server

The server can only run on the client's local machine because it depends on local resources.

Enables document search and retrieval using TF-IDF vector similarity across HTML and PDF files. Provides ingest, query, and vector store management capabilities through both HTTP API and MCP stdio interfaces.

  1. Usage (Local)
    1. Deployment
      1. Docker (single container)
      2. Docker Compose
      3. MCP Stdio Server
    2. Data Layout

      MCP directory API

      We provide all the information about MCP servers via our MCP API.

      curl -X GET 'https://glama.ai/api/mcp/v1/servers/Paddione/mcp'

      If you have feedback or need assistance with the MCP directory API, please join our Discord server