Vibe Check MCP

by PV-Bhat
Verified
# Metacognitive Architecture This document visualizes the metacognitive architecture of Vibe Check and explains how the components work together to create a complete pattern interrupt system for AI agents. ## System Architecture ``` ┌────────────────────────────────────┐ │ User + AI Agent │ └───────────────┬────────────────────┘ │ ▼ ┌─────────────────────────────────────────────────┐ │ Agent Workflow │ │ │ │ ┌───────┐ ┌───────┐ ┌───────┐ │ │ │Planning│ ──▶ │Implement│ ──▶ │ Review │ │ │ └───┬───┘ └───┬───┘ └───┬───┘ │ │ │ │ │ │ └────────┼──────────────┼──────────────┼──────────┘ │ │ │ ▼ ▼ ▼ ┌────────────────────────────────────────────────────────────────────────┐ │ Metacognitive Layer (Vibe Check) │ │ │ │ ┌─────────────────┐ ┌─────────────────┐ ┌─────────────────────┐ │ │ │ vibe_check │◀──▶│ vibe_distill │◀──▶│ vibe_learn │ │ │ │ │ │ │ │ │ │ │ │ Pattern Interrupt│ │ Meta-Thinking │ │ Self-Improving │ │ │ │ Mechanism │ │ Anchor Point │ │ Feedback Loop │ │ │ └────────┬────────┘ └────────┬────────┘ └─────────┬───────────┘ │ │ │ │ │ │ └───────────┼──────────────────────┼───────────────────────┼───────────────┘ │ │ │ ▼ ▼ ▼ ┌───────────────────┐ ┌───────────────────┐ ┌───────────────────────────┐ │ Phase-Specific │ │ Plan Distillation│ │ Pattern Recognition │ │ Metacognitive │ │ and Essential │ │ Database and │ │ Questions │ │ Element Extraction│ │ Category Analysis │ └───────────────────┘ └───────────────────┘ └───────────────────────────┘ ``` ## Component Interactions ### 1. vibe_check (Pattern Interrupt) The `vibe_check` tool serves as the primary pattern interrupt mechanism. It works by: 1. Receiving the current plan or thinking from the agent 2. Analyzing it for potential misalignments, tunnel vision, or overengineering 3. Generating phase-appropriate metacognitive questions 4. Identifying potential pattern matches with previous issues The output creates a moment of pause and reflection, forcing the agent to reconsider its approach before continuing. This is critical because LLM agents lack natural mechanisms for self-doubt and course correction. ### 2. vibe_distill (Anchor Point) The `vibe_distill` tool provides a recalibration mechanism through: 1. Taking a complex, potentially overengineered plan 2. Extracting the essential elements and core requirements 3. Removing unnecessary complexity and scope creep 4. Creating a simplified "anchor" that the agent can return to This serves as both a corrective mechanism and a reference point for future planning, helping to prevent drift in complex workflows. ### 3. vibe_learn (Feedback Loop) The `vibe_learn` tool creates a self-improving feedback loop by: 1. Recording specific instances of mistakes and their solutions 2. Categorizing these patterns into meaningful groups 3. Building a knowledge base of common error patterns 4. Feeding this information back into the pattern recognition process Over time, this creates a more sophisticated pattern recognition system that can identify potential issues earlier and with greater accuracy. ## Integration Flow The three components can be used independently but are designed to work together in an integrated metacognitive layer: 1. **Planning Phase**: `vibe_check` identifies potential issues in the initial plan, potentially triggering `vibe_distill` if overengineering is detected. 2. **Implementation Phase**: `vibe_check` with higher confidence provides more focused feedback on specific implementation decisions, referencing patterns from `vibe_learn`. 3. **Review Phase**: `vibe_check` ensures the final solution aligns with the original intent, while `vibe_learn` captures any issues that were identified for future improvement. 4. **Across Workflows**: As more patterns are recorded via `vibe_learn`, the pattern recognition capabilities of the system improve, making `vibe_check` increasingly effective at identifying potential issues early. ## Metacognitive Principles This architecture embodies several key principles from metacognitive theory: 1. **External Reflection**: Providing the reflection capabilities that agents lack internally 2. **Strategic Interruption**: Timing interrupts to maximize impact on the workflow 3. **Phase Awareness**: Tailoring metacognitive feedback to different cognitive stages 4. **Pattern Recognition**: Leveraging past experiences to improve future interventions 5. **Complexity Management**: Using distillation to manage cognitive load and scope The result is a complete metacognitive layer that compensates for the inherent limitations of LLM agents in questioning their own reasoning processes.