Vibe Check MCP
by PV-Bhat
Verified
# Metacognitive Architecture
This document visualizes the metacognitive architecture of Vibe Check and explains how the components work together to create a complete pattern interrupt system for AI agents.
## System Architecture
```
┌────────────────────────────────────┐
│ User + AI Agent │
└───────────────┬────────────────────┘
│
▼
┌─────────────────────────────────────────────────┐
│ Agent Workflow │
│ │
│ ┌───────┐ ┌───────┐ ┌───────┐ │
│ │Planning│ ──▶ │Implement│ ──▶ │ Review │ │
│ └───┬───┘ └───┬───┘ └───┬───┘ │
│ │ │ │ │
└────────┼──────────────┼──────────────┼──────────┘
│ │ │
▼ ▼ ▼
┌────────────────────────────────────────────────────────────────────────┐
│ Metacognitive Layer (Vibe Check) │
│ │
│ ┌─────────────────┐ ┌─────────────────┐ ┌─────────────────────┐ │
│ │ vibe_check │◀──▶│ vibe_distill │◀──▶│ vibe_learn │ │
│ │ │ │ │ │ │ │
│ │ Pattern Interrupt│ │ Meta-Thinking │ │ Self-Improving │ │
│ │ Mechanism │ │ Anchor Point │ │ Feedback Loop │ │
│ └────────┬────────┘ └────────┬────────┘ └─────────┬───────────┘ │
│ │ │ │ │
└───────────┼──────────────────────┼───────────────────────┼───────────────┘
│ │ │
▼ ▼ ▼
┌───────────────────┐ ┌───────────────────┐ ┌───────────────────────────┐
│ Phase-Specific │ │ Plan Distillation│ │ Pattern Recognition │
│ Metacognitive │ │ and Essential │ │ Database and │
│ Questions │ │ Element Extraction│ │ Category Analysis │
└───────────────────┘ └───────────────────┘ └───────────────────────────┘
```
## Component Interactions
### 1. vibe_check (Pattern Interrupt)
The `vibe_check` tool serves as the primary pattern interrupt mechanism. It works by:
1. Receiving the current plan or thinking from the agent
2. Analyzing it for potential misalignments, tunnel vision, or overengineering
3. Generating phase-appropriate metacognitive questions
4. Identifying potential pattern matches with previous issues
The output creates a moment of pause and reflection, forcing the agent to reconsider its approach before continuing. This is critical because LLM agents lack natural mechanisms for self-doubt and course correction.
### 2. vibe_distill (Anchor Point)
The `vibe_distill` tool provides a recalibration mechanism through:
1. Taking a complex, potentially overengineered plan
2. Extracting the essential elements and core requirements
3. Removing unnecessary complexity and scope creep
4. Creating a simplified "anchor" that the agent can return to
This serves as both a corrective mechanism and a reference point for future planning, helping to prevent drift in complex workflows.
### 3. vibe_learn (Feedback Loop)
The `vibe_learn` tool creates a self-improving feedback loop by:
1. Recording specific instances of mistakes and their solutions
2. Categorizing these patterns into meaningful groups
3. Building a knowledge base of common error patterns
4. Feeding this information back into the pattern recognition process
Over time, this creates a more sophisticated pattern recognition system that can identify potential issues earlier and with greater accuracy.
## Integration Flow
The three components can be used independently but are designed to work together in an integrated metacognitive layer:
1. **Planning Phase**: `vibe_check` identifies potential issues in the initial plan, potentially triggering `vibe_distill` if overengineering is detected.
2. **Implementation Phase**: `vibe_check` with higher confidence provides more focused feedback on specific implementation decisions, referencing patterns from `vibe_learn`.
3. **Review Phase**: `vibe_check` ensures the final solution aligns with the original intent, while `vibe_learn` captures any issues that were identified for future improvement.
4. **Across Workflows**: As more patterns are recorded via `vibe_learn`, the pattern recognition capabilities of the system improve, making `vibe_check` increasingly effective at identifying potential issues early.
## Metacognitive Principles
This architecture embodies several key principles from metacognitive theory:
1. **External Reflection**: Providing the reflection capabilities that agents lack internally
2. **Strategic Interruption**: Timing interrupts to maximize impact on the workflow
3. **Phase Awareness**: Tailoring metacognitive feedback to different cognitive stages
4. **Pattern Recognition**: Leveraging past experiences to improve future interventions
5. **Complexity Management**: Using distillation to manage cognitive load and scope
The result is a complete metacognitive layer that compensates for the inherent limitations of LLM agents in questioning their own reasoning processes.