Skip to main content
Glama

Chicken Business Management MCP Server

by PSYGER02
COMPLETE_WORKSPACE_ANALYSIS_CHARNOKSV3_AND_MCP.mdβ€’11.1 kB
# πŸ” **COMPLETE WORKSPACE ANALYSIS: MCP Server vs Charnoksv3 Repository** ## Current State Analysis & Organizational Recommendations --- ## πŸ“Š **Current Repository Analysis** ### πŸ”§ **Your Charnoksv3 Repository Structure** Based on the GitHub analysis, here's what you currently have: ``` Charnoksv3/ (Main Repository) β”œβ”€β”€ πŸ“ components/ # βœ… UI components (React/TSX) β”œβ”€β”€ πŸ“ pages/ # βœ… Application pages β”œβ”€β”€ πŸ“ hooks/ # βœ… React hooks β”œβ”€β”€ πŸ“ stores/ # βœ… State management β”œβ”€β”€ πŸ“ utils/ # βœ… Client utilities β”œβ”€β”€ πŸ“ api/ # βœ… Vercel serverless functions β”œβ”€β”€ πŸ“ services/ # ⚠️ MIXED CLIENT/SERVER SERVICES β”‚ β”œβ”€β”€ aiAssistant.ts # βœ… Client-side AI β”‚ β”œβ”€β”€ chickenBusinessAI.ts # βœ… Client-side AI coordinator β”‚ β”œβ”€β”€ offlineService.ts # βœ… IndexedDB operations β”‚ β”œβ”€β”€ supabaseService.ts # βœ… Client auth & RLS β”‚ β”œβ”€β”€ connectionService.ts # βœ… Network detection β”‚ β”œβ”€β”€ syncService.ts # βœ… Client sync β”‚ β”œβ”€β”€ smartSaveService.ts # βœ… Offline-first data β”‚ β”œβ”€β”€ AIAgentService.ts # βœ… Client workflow β”‚ └── [many other client services...] β”œβ”€β”€ πŸ“ mcp-server/ # 🚨 NESTED MCP SERVER (ISSUE!) β”‚ └── src/services/ # ❌ Duplicated services in wrong place β”œβ”€β”€ πŸ“ sql/ # βœ… Database schemas β”œβ”€β”€ πŸ“ public/ # βœ… Static assets β”œβ”€β”€ πŸ“ data/ # βœ… Static data └── [Configuration files...] # βœ… Client build config ``` ### πŸ”§ **Your Separate MCP Server Repository** ``` mcpserver/ (Separate Repository - c:\Users\Admin\mcpserver) β”œβ”€β”€ πŸ“ src/ β”‚ β”œβ”€β”€ index.ts # βœ… Main MCP server β”‚ β”œβ”€β”€ advanced-gemini-proxy.ts # βœ… AI API management β”‚ β”œβ”€β”€ πŸ“ services/ # ⚠️ MIXED (some should be client-side) β”‚ β”‚ β”œβ”€β”€ aiStoreAdvisor.ts # βœ… Server-side business AI β”‚ β”‚ β”œβ”€β”€ aiObserver.ts # βœ… Server-side analytics β”‚ β”‚ β”œβ”€β”€ chickenMemoryService.ts # βœ… MCP memory integration β”‚ β”‚ β”œβ”€β”€ unifiedAI.ts # βœ… Server AI orchestration β”‚ β”‚ β”œβ”€β”€ chickenBusinessAI.ts # ❌ Should be client-side β”‚ β”‚ β”œβ”€β”€ aiAssistant.ts # ❌ Should be client-side β”‚ β”‚ └── [other mixed services...] β”‚ └── πŸ“ tools/ # βœ… MCP tools β”œβ”€β”€ πŸ“ sql/ # βœ… MCP database schema β”œβ”€β”€ Dockerfile # βœ… Container deployment β”œβ”€β”€ docker-compose.yml # βœ… Multi-service setup └── [MCP configuration...] # βœ… Server deployment config ``` --- ## 🚨 **Critical Issues Identified** ### **Issue #1: Duplicated Services Across Repositories** Both repositories have similar services but with different implementations: | Service | Charnoksv3 Main | MCP Server | Correct Location | |---------|----------------|------------|------------------| | `chickenBusinessAI.ts` | βœ… Client version | ❌ Server version | **Client only** | | `aiAssistant.ts` | βœ… Client version | ❌ Server version | **Client only** | | `aiStoreAdvisor.ts` | ❌ Missing | βœ… Server version | **Server only** | | `aiObserver.ts` | ❌ Missing | βœ… Server version | **Server only** | ### **Issue #2: Nested MCP Server in Main Repository** Your Charnoksv3 repository contains a `mcp-server/` folder that duplicates and conflicts with your separate MCP server repository. ### **Issue #3: Service Architecture Confusion** Services are mixed between client-side logic (UI, offline, RLS) and server-side logic (AI processing, business intelligence). --- ## 🎯 **RECOMMENDED SOLUTION** ### **Phase 1: Clean Up Main Repository (Charnoksv3)** #### **Remove Nested MCP Server** ```bash # In your Charnoksv3 repository: rm -rf mcp-server/ ``` #### **Keep These Services in Main Repository:** ``` Charnoksv3/services/ (Client-Side Services) β”œβ”€β”€ βœ… aiAssistant.ts # Client AI coordinator β”œβ”€β”€ βœ… chickenBusinessAI.ts # Client-side AI workflow β”œβ”€β”€ βœ… offlineService.ts # IndexedDB operations β”œβ”€β”€ βœ… supabaseService.ts # Client auth & RLS β”œβ”€β”€ βœ… connectionService.ts # Network detection β”œβ”€β”€ βœ… syncService.ts # Client synchronization β”œβ”€β”€ βœ… smartSaveService.ts # Offline-first data access β”œβ”€β”€ βœ… AIAgentService.ts # Client AI workflow β”œβ”€β”€ βœ… offlineFirstDataService.ts # Offline data management β”œβ”€β”€ βœ… enhancedSyncService.ts # Enhanced sync logic β”œβ”€β”€ βœ… optimizedAIService.ts # Client AI optimization β”œβ”€β”€ βœ… geminiAPIManager.ts # Client Gemini calls β”œβ”€β”€ βœ… productService.ts # Client product operations β”œβ”€β”€ βœ… salesService.ts # Client sales operations β”œβ”€β”€ βœ… expenseService.ts # Client expense operations β”œβ”€β”€ βœ… stockService.ts # Client stock operations └── πŸ“ mcp/ # NEW: MCP client integration └── πŸ†• mcpClient.ts # HTTP client for MCP server ``` ### **Phase 2: Optimize Separate MCP Server** #### **Keep Only Server-Side Services:** ``` mcpserver/src/services/ (Server-Side Services) β”œβ”€β”€ βœ… aiStoreAdvisor.ts # Business consultation AI β”œβ”€β”€ βœ… aiObserver.ts # Performance analytics & insights β”œβ”€β”€ βœ… chickenMemoryService.ts # MCP memory graph integration β”œβ”€β”€ βœ… unifiedAI.ts # Multi-role AI orchestration β”œβ”€β”€ βœ… chatWebSocketService.ts # Real-time communication β”œβ”€β”€ βœ… aiTrainingService.ts # AI pattern learning β”œβ”€β”€ βœ… rateLimitService.ts # Server-side rate limiting └── πŸ“ config/ └── βœ… supabaseConfig.ts # Server DB configuration ``` #### **Remove Client-Side Services from MCP Server:** ```bash # Delete these from MCP server (they belong in main repo): rm src/services/chickenBusinessAI.ts rm src/services/aiAssistant.ts rm src/services/embeddingService.ts rm src/services/salesService.ts rm src/services/stockService.ts rm src/services/geminiService.ts rm src/services/MultiLLMProxy.ts rm src/services/optimizedAIService.ts rm src/services/dataFixService.ts ``` --- ## πŸ”„ **STEP-BY-STEP IMPLEMENTATION PLAN** ### **Step 1: Create MCP Client in Main Repository** Create `Charnoksv3/services/mcp/mcpClient.ts`: ```typescript /** * MCP Client - Communicates with separate MCP server * Handles all AI processing requests to the MCP server */ export class MCPClient { private baseUrl: string; private authToken: string; constructor() { this.baseUrl = process.env.MCP_SERVER_URL || 'http://localhost:3002'; this.authToken = process.env.MCP_AUTH_TOKEN || ''; } async processChickenNote(content: string, userRole: string): Promise<any> { const response = await fetch(`${this.baseUrl}/api/tools/call`, { method: 'POST', headers: { 'Content-Type': 'application/json', 'Authorization': `Bearer ${this.authToken}` }, body: JSON.stringify({ name: 'parse_chicken_note', arguments: { content, userRole } }) }); return response.json(); } async getBusinessAdvice(question: string, context: any): Promise<any> { const response = await fetch(`${this.baseUrl}/api/tools/call`, { method: 'POST', headers: { 'Content-Type': 'application/json', 'Authorization': `Bearer ${this.authToken}` }, body: JSON.stringify({ name: 'get_business_advice', arguments: { question, context } }) }); return response.json(); } } export const mcpClient = new MCPClient(); ``` ### **Step 2: Update Main Repository Services** Update `Charnoksv3/services/chickenBusinessAI.ts` to use MCP client: ```typescript import { mcpClient } from './mcp/mcpClient'; export class ChickenBusinessAI { async processNote(content: string, userRole: string): Promise<any> { try { // Use MCP server for AI processing const mcpResult = await mcpClient.processChickenNote(content, userRole); if (mcpResult.success) { return mcpResult.result; } // Fallback to local processing if MCP server unavailable return this.processNoteLocally(content, userRole); } catch (error) { console.warn('MCP server unavailable, using local processing:', error); return this.processNoteLocally(content, userRole); } } private async processNoteLocally(content: string, userRole: string): Promise<any> { // Existing local processing logic // This provides resilience when MCP server is down } } ``` ### **Step 3: Clean Up MCP Server** Remove client-side services from your separate MCP server and ensure it focuses only on: - βœ… AI processing and business intelligence - βœ… MCP protocol compliance - βœ… Server-side memory and analytics - βœ… WebSocket real-time communication - βœ… Business consultation AI --- ## πŸ“‹ **ARCHITECTURE BENEFITS** ### **Clean Separation of Concerns:** - **Main Repository (Charnoksv3)**: UI, client logic, offline functionality, user interactions - **MCP Server**: AI processing, business intelligence, server-side analytics, real-time communication ### **Development Benefits:** - πŸ”„ Independent deployment cycles - πŸ”„ Clear service boundaries - πŸ”„ Easier maintenance and debugging - πŸ”„ Scalable architecture (can run MCP server on different infrastructure) - πŸ”„ Fallback capabilities (client can work offline if MCP server unavailable) ### **Operational Benefits:** - πŸ”„ MCP server can be scaled independently - πŸ”„ Client application remains lightweight - πŸ”„ AI processing doesn't impact client performance - πŸ”„ Better security (sensitive AI operations server-side) --- ## 🚧 **IMPLEMENTATION PRIORITY** ### **High Priority:** 1. βœ… Remove nested `mcp-server/` from Charnoksv3 repository 2. βœ… Create `mcpClient.ts` for communication between repositories 3. βœ… Remove client-side services from separate MCP server ### **Medium Priority:** 4. βœ… Update service imports and references 5. βœ… Test integration between repositories 6. βœ… Update documentation ### **Low Priority:** 7. βœ… Optimize deployment pipelines 8. βœ… Enhanced error handling and fallbacks 9. βœ… Performance monitoring across both repositories --- ## πŸ”§ **NEXT ACTIONS** Would you like me to: 1. **Start implementing** the MCP client in your main repository? 2. **Clean up** the nested mcp-server folder in Charnoksv3? 3. **Remove client services** from your separate MCP server? 4. **Create integration tests** between the repositories? This organization will give you a clean, professional, and scalable architecture where both repositories serve their intended purposes effectively.

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/PSYGER02/mcpserver'

If you have feedback or need assistance with the MCP directory API, please join our Discord server