Skip to main content
Glama
by OxSci-AI

MCP Server Template

A scaffold template for building MCP (Model Context Protocol) servers using the oxsci-oma-mcp framework.

Prerequisites

  • Python 3.11 or higher

  • Poetry for dependency management

  • AWS CLI configured with access to CodeArtifact (for installing dependencies from CodeArtifact)

Note: Docker is only required for CI/CD deployment workflows, not for local development.

Installation

Installation Prerequisites

The installer script itself only requires Python 3.11+ (uses only Python standard library, no external packages needed).

However, to complete the installation, you also need:

  • Git installed (for initializing the repository)

  • Network connectivity to GitHub (for downloading the template)

  • Write permissions in the directory where you'll run the script

The installer will also check for:

  • AWS CLI (warning only - required later for CodeArtifact access, but not needed during installation)

The installer will automatically check these prerequisites before proceeding.

Option 1: Quick Install (Recommended)

Install directly from GitHub with a single command. You can use either command-line arguments (recommended) or interactive prompts.

Important: Run the script from the parent directory where you want to create the service. For example:

  • To create /git/mcp-my-service/, run the script from /git/ directory

  • The script will create mcp-{service-name}/ in the current working directory

Direct Installation with Arguments (Recommended)

The simplest way - directly download and execute with parameters:

# Navigate to the parent directory where you want to create the service cd /git # Run the installer curl -sSL https://raw.githubusercontent.com/OxSci-AI/oxsci-mcp-scaffold/main/install.py | python3 - \ --service-name document-processor \ --tool-name document_processor \ --yes

Command-line options:

  • --service-name: Service name (must start with a letter, lowercase letters/numbers/hyphens only)

  • --tool-name: Initial tool name (must start with a letter, lowercase letters/numbers/underscores only)

  • --yes or -y: Skip confirmation prompt (recommended for non-interactive mode)

  • --skip-env-check: Skip environment prerequisites check (not recommended)

Interactive Mode

If you prefer to answer prompts interactively, download the script first:

# Navigate to the parent directory where you want to create the service cd /git # Download and run interactively curl -sSL https://raw.githubusercontent.com/OxSci-AI/oxsci-mcp-scaffold/main/install.py > install.py python3 install.py

The script will:

  1. Check environment prerequisites (Python 3.11+, Git, network connectivity)

  2. Show current directory and confirm where the service will be created

  3. Prompt for service name (e.g., document-processor - will create mcp-document-processor directory)

  4. Prompt for tool name (e.g., document_processor - will create the initial tool file and configure it)

Note: If you try to use the pipe method without arguments, you'll get an EOFError because stdin is redirected. Always provide --service-name and --tool-name when using the pipe method.

The installer will:

  1. Verify environment prerequisites (Python 3.11+, Git, network)

  2. Download the latest scaffold template from GitHub

  3. Create a new project directory with all files configured

  4. Initialize a git repository

  5. Set up the tool structure and configuration files

Option 2: Manual Setup

If you prefer to clone the repository first:

# Clone the repository git clone https://github.com/OxSci-AI/oxsci-mcp-scaffold.git cd oxsci-mcp-scaffold # Run setup script python setup.py

The setup script will prompt you for:

  • Service name (will create mcp-{service-name} directory)

  • Tool name (will create the initial tool file and configure it)

Quick Start

After installation, navigate to your new service directory:

cd mcp-{your-service-name}

1. Configure AWS CodeArtifact

Before installing dependencies, configure access to the private package repository:

# Make the script executable (if not already) chmod +x entrypoint-dev.sh # Run the configuration script (valid for 12 hours) ./entrypoint-dev.sh

Note: The authentication token expires after 12 hours. Re-run this script when needed.

2. Install Dependencies

poetry install

3. Development

Run Server Locally

poetry run uvicorn app.core.main:app --reload --port 8060

Access the server at: http://localhost:8060

Test Your Tools

Check server status:

curl http://localhost:8060/

Discover available tools:

curl http://localhost:8060/tools/discover

List all tools (including disabled ones):

curl http://localhost:8060/tools/list

Execute a tool:

curl -X POST http://localhost:8060/tools/example_tool \ -H "Content-Type: application/json" \ -d '{ "arguments": { "input_text": "Hello World", "uppercase": true }, "context": { "user_id": "user123" } }'

Project Structure

mcp-{service-name}/ ├── .github/ │ └── workflows/ │ └── docker-builder.yml # CI/CD workflow for building and deploying ├── app/ │ ├── core/ │ │ ├── __init__.py │ │ ├── config.py # Service configuration │ │ └── main.py # FastAPI application entry point │ └── tools/ │ ├── __init__.py # Import tools here │ ├── example_tool.py # Example tool implementation │ └── tool_template.py # Comprehensive tool template (disabled) ├── docs/ │ └── TOOL_DEVELOPMENT.md # Tool development guide ├── tests/ │ └── test_example.py # Example tests ├── .vscode/ │ └── extensions.json # Recommended VS Code extensions ├── Dockerfile # Multi-stage Docker build ├── entrypoint-dev.sh # CodeArtifact configuration script ├── install.py # Installer script (for creating new services) ├── setup.py # Setup script (for local setup) ├── pyproject.toml # Project dependencies and configuration └── README.md # This file

Next Steps

Once your service is set up and running, refer to these resources:

  • Tool Development Guide: Learn how to create, configure, and deploy MCP tools

  • API Documentation: Visit http://localhost:8060/docs when running locally

  • Example Tool: Check app/tools/example_tool.py for a working example

  • Template Tool: See app/tools/tool_template.py for comprehensive patterns

Tools and Frameworks

This template integrates:

  • FastAPI: Web framework for building APIs

  • oxsci-oma-mcp: MCP protocol implementation and tool router

  • oxsci-shared-core: Shared utilities and configuration (optional)

Related Projects

License

© 2025 OxSci.AI. All rights reserved.

-
security - not tested
F
license - not found
-
quality - not tested

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/OxSci-AI/oxsci-mcp-scaffold'

If you have feedback or need assistance with the MCP directory API, please join our Discord server