Skip to main content
Glama
README.md3.44 kB
# Claude Skills MCP Frontend Lightweight MCP proxy for Claude Skills that auto-downloads the heavy backend on demand. ## Overview This is the frontend component of the Claude Skills MCP system. It's a lightweight proxy (~15 MB) that: - Starts instantly (<5 seconds) - Auto-downloads the backend when first needed - Acts as MCP server (stdio) for Cursor - Acts as MCP client (HTTP) for the backend - Returns tool schemas immediately (no backend wait needed) ## Installation ```bash # Via uvx (recommended for Cursor) uvx claude-skills-mcp # Via uv tool (persistent install) uv tool install claude-skills-mcp # Via pip pip install claude-skills-mcp ``` ## Usage with Cursor Add to your Cursor MCP settings (`~/.cursor/mcp.json`): ```json { "mcpServers": { "claude-skills": { "command": "uvx", "args": ["claude-skills-mcp"] } } } ``` Restart Cursor and the skills will be available! ### First Run Behavior On first run, the frontend will: 1. Start immediately (~5 seconds) ✅ **Cursor timeout satisfied!** 2. Return tool schemas to Cursor (instant) 3. Download backend in background (~250 MB, 60-120 seconds) 4. When you first use a tool, you'll see "Loading backend..." 5. Once backend ready, all tools work normally **Subsequent runs**: Fast! Backend is already installed. ## Configuration The frontend forwards all arguments to the backend: ```bash # Custom configuration uvx claude-skills-mcp --config my-config.json # Verbose logging uvx claude-skills-mcp --verbose # Custom backend port (advanced) uvx claude-skills-mcp --port 9000 ``` ## Remote Backend (Future) ```bash # Connect to hosted backend instead of local uvx claude-skills-mcp --remote https://skills.k-dense.ai/mcp ``` **Note**: Remote backend support coming in v1.1.0 ## How It Works ``` Cursor → Frontend (stdio, ~15 MB) ↓ list_tools() → Returns hardcoded schemas INSTANTLY ✅ ↓ [Backend downloads in background...] ↓ call_tool() → Proxies to Backend (HTTP) ↓ Backend (HTTP, ~250 MB) → Performs actual search ``` This architecture solves the Cursor timeout problem by separating: - **Fast startup** (frontend, minimal dependencies) - **Heavy processing** (backend, downloads async) ## Dependencies Frontend only requires: - `mcp>=1.0.0` (~5 MB) - `httpx>=0.24.0` (~5 MB) **Total**: ~15 MB (downloads in <10 seconds) The backend (`claude-skills-mcp-backend`) is auto-installed on first use. ## Troubleshooting ### "Backend not ready" message On first run, you'll see this message for 30-120 seconds while the backend downloads. This is normal and only happens once. ### Backend installation fails Check: 1. Internet connection 2. Disk space (~500 MB free needed) 3. Python 3.12 installed ### Tools not working Run with verbose logging: ```bash uvx claude-skills-mcp --verbose ``` Check logs in stderr for backend status. ## Development ```bash # Clone the monorepo git clone https://github.com/K-Dense-AI/claude-skills-mcp.git cd claude-skills-mcp/packages/frontend # Install in development mode uv pip install -e ".[test]" # Run tests uv run pytest tests/ ``` ## Related Packages - **claude-skills-mcp-backend** (Backend): Heavy server with vector search - **Main Repository**: https://github.com/K-Dense-AI/claude-skills-mcp ## License Apache License 2.0 Copyright 2025 K-Dense AI (https://k-dense.ai)

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/OrionLi545/claude-skills-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server