Skip to main content
Glama
Octodet

octodet-elasticsearch-mcp

count_documents

Count documents within a specified Elasticsearch index, optionally filtered by a query, to efficiently track data volume using the octodet-elasticsearch-mcp server.

Instructions

Count documents in an index, optionally filtered by a query

Input Schema

NameRequiredDescriptionDefault
indexYesName of the Elasticsearch index to count documents in
queryNoOptional Elasticsearch query to filter documents to count

Input Schema (JSON Schema)

{ "$schema": "http://json-schema.org/draft-07/schema#", "additionalProperties": false, "properties": { "index": { "description": "Name of the Elasticsearch index to count documents in", "minLength": 1, "type": "string" }, "query": { "additionalProperties": {}, "description": "Optional Elasticsearch query to filter documents to count", "type": "object" } }, "required": [ "index" ], "type": "object" }

Implementation Reference

  • Handler function that executes the count_documents tool logic by calling esService.countDocuments, formatting the success response or error message.
    async ({ index, query }) => { try { const count = await esService.countDocuments(index, query); return { content: [ { type: "text", text: `Count of documents in index '${index}'${ query ? " matching the provided query" : "" }: ${count}`, }, ], }; } catch (error) { console.error( `Failed to count documents: ${ error instanceof Error ? error.message : String(error) }` ); return { content: [ { type: "text", text: `Error: ${ error instanceof Error ? error.message : String(error) }`, }, ], }; } }
  • Input schema using Zod for the count_documents tool: required 'index' string and optional 'query' object.
    { index: z .string() .trim() .min(1, "Index name is required") .describe("Name of the Elasticsearch index to count documents in"), query: z .record(z.any()) .optional() .describe("Optional Elasticsearch query to filter documents to count"), },
  • src/index.ts:1030-1075 (registration)
    Registration of the 'count_documents' tool on the MCP server using server.tool().
    server.tool( "count_documents", "Count documents in an index, optionally filtered by a query", { index: z .string() .trim() .min(1, "Index name is required") .describe("Name of the Elasticsearch index to count documents in"), query: z .record(z.any()) .optional() .describe("Optional Elasticsearch query to filter documents to count"), }, async ({ index, query }) => { try { const count = await esService.countDocuments(index, query); return { content: [ { type: "text", text: `Count of documents in index '${index}'${ query ? " matching the provided query" : "" }: ${count}`, }, ], }; } catch (error) { console.error( `Failed to count documents: ${ error instanceof Error ? error.message : String(error) }` ); return { content: [ { type: "text", text: `Error: ${ error instanceof Error ? error.message : String(error) }`, }, ], }; } } );
  • Helper method in ElasticsearchService class that performs the actual document count using Elasticsearch client.count API.
    async countDocuments(index: string, query?: any): Promise<number> { const response = await this.client.count({ index, ...(query ? { query } : {}), }); return response.count; }

Other Tools

Related Tools

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Octodet/elasticsearch-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server