Skip to main content
Glama

generate_linkedin_post

Generate LinkedIn post drafts from YouTube video content by summarizing key points and applying specified tone and hashtags.

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
summaryYesSummary of the video content
videoTitleYesTitle of the YouTube video
speakerNameNoName of the speaker in the video (optional)
hashtagsNoRelevant hashtags (optional)
toneNoTone of the LinkedIn postfirst-person
includeCallToActionNoWhether to include a call to action

Implementation Reference

  • Core handler function that generates a LinkedIn post using OpenAI GPT based on video summary, title, speaker, hashtags, tone, etc.
    export async function generateLinkedInPost( summary, videoTitle, speakerName = null, hashtags = [], tone = "first-person", includeCallToAction = true, apiKey ) { if (!apiKey) { throw new Error("OpenAI API key not provided"); } if (!summary || summary.trim().length === 0) { throw new Error("Empty summary provided"); } console.log(`Generating LinkedIn post with tone: ${tone}`); try { // Initialize OpenAI client with provided API key const openai = new OpenAI({ apiKey: apiKey, }); // Prepare hashtag string const hashtagString = hashtags && hashtags.length > 0 ? hashtags.map(tag => tag.startsWith('#') ? tag : `#${tag}`).join(' ') : ''; // Prepare speaker reference const speakerReference = speakerName ? `by ${speakerName}` : ''; const response = await openai.chat.completions.create({ model: "gpt-3.5-turbo", messages: [ { role: "system", content: `You are a professional LinkedIn content creator. Create a compelling LinkedIn post in a ${tone} tone based on the provided video summary. The post should be between 500-1200 characters (not including hashtags). Structure the post with: 1. An attention-grabbing hook 2. 2-3 key insights from the video 3. A personal reflection or takeaway ${includeCallToAction ? '4. A soft call to action (e.g., asking a question, inviting comments)' : ''} The post should feel authentic, professional, and valuable to LinkedIn readers. Avoid clickbait or overly promotional language.` }, { role: "user", content: `Create a LinkedIn post based on this YouTube video: Title: ${videoTitle} ${speakerReference} Summary: ${summary} ${hashtagString ? `Suggested hashtags: ${hashtagString}` : ''} Please format the post ready to copy and paste to LinkedIn.` } ], temperature: 0.7, max_tokens: 700 }); if (response.choices && response.choices.length > 0) { let post = response.choices[0].message.content.trim(); // Ensure hashtags are at the end if they weren't included if (hashtagString && !post.includes(hashtagString)) { post += `\n\n${hashtagString}`; } return post; } else { throw new Error("No post generated"); } } catch (error) { console.error("Post generation error:", error); throw new Error(`Failed to generate LinkedIn post: ${error.message}`); } }
  • src/server.js:167-220 (registration)
    MCP tool registration for 'generate_linkedin_post' including Zod input schema, wrapper handler that checks API key and calls the core generateLinkedInPost function, and description.
    server.tool( "generate_linkedin_post", { summary: z.string().describe("Summary of the video content"), videoTitle: z.string().describe("Title of the YouTube video"), speakerName: z.string().optional().describe("Name of the speaker in the video (optional)"), hashtags: z.array(z.string()).optional().describe("Relevant hashtags (optional)"), tone: z.enum(["first-person", "third-person", "thought-leader"]) .default("first-person") .describe("Tone of the LinkedIn post"), includeCallToAction: z.boolean().default(true) .describe("Whether to include a call to action") }, async ({ summary, videoTitle, speakerName, hashtags, tone, includeCallToAction }) => { try { // Check if OpenAI API key is set if (!apiKeyManager.hasOpenAIKey()) { throw new Error("OpenAI API key not set. Please use the set_api_keys tool first."); } const post = await generateLinkedInPost( summary, videoTitle, speakerName, hashtags, tone, includeCallToAction, apiKeyManager.getOpenAIKey() ); return { content: [{ type: "text", text: JSON.stringify({ success: true, post }, null, 2) }] }; } catch (error) { return { content: [{ type: "text", text: JSON.stringify({ success: false, error: error.message }, null, 2) }], isError: true }; } }, { description: "Generate a LinkedIn post draft from a video summary" } );
  • Zod schema defining input parameters for the generate_linkedin_post tool.
    { summary: z.string().describe("Summary of the video content"), videoTitle: z.string().describe("Title of the YouTube video"), speakerName: z.string().optional().describe("Name of the speaker in the video (optional)"), hashtags: z.array(z.string()).optional().describe("Relevant hashtags (optional)"), tone: z.enum(["first-person", "third-person", "thought-leader"]) .default("first-person") .describe("Tone of the LinkedIn post"), includeCallToAction: z.boolean().default(true) .describe("Whether to include a call to action") },

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/NvkAnirudh/LinkedIn-Post-Generator'

If you have feedback or need assistance with the MCP directory API, please join our Discord server