Skip to main content
Glama

Advanced MCP Server

by Nom-nom-hub
PRD.md9.32 kB
# Advanced MCP Server — PRD & System Architecture ## 1. Product Requirements Document (PRD) ### Overview The Advanced MCP (Model Context Protocol) Server is designed to provide AI coding agents with a secure, flexible, and extensible environment for executing coding tasks. It allows multiple AI coders to connect, negotiate capabilities, run commands, access resources, and collaborate in a sandboxed, controlled environment. ### Objectives * Provide a standardized protocol for AI coders to interact with development environments. * Securely isolate execution through sandboxing (Docker-based). * Enable extensibility via plugins/tools. * Support multi-agent collaboration. * Ensure auditability and safety through policy controls. ### Key Features 1. **Session Management** – Initialize and negotiate capabilities between AI and MCP server. 2. **Resource Management** – Secure file operations and persistent storage APIs. 3. **Tool Execution** – Run commands or tools in sandboxed environments with streaming logs. 4. **Policy Engine** – Enforce permissions, audit logs, and sandbox constraints. 5. **Multi-Agent Collaboration** – Allow multiple AI coders to connect to the same workspace. 6. **Extensible Tooling** – Support dynamically loadable tools (linters, compilers, frameworks). --- ## 2. System Architecture ```mermaid graph TD A[AI Coder Client] -->|MCP/gRPC/WebSocket| B[MCP Gateway] B --> C[Session Manager] B --> D[Resource Manager] B --> E[Execution Manager] B --> F[Policy Engine] E --> G[Sandbox Runtime - Docker] C --> H[Audit Log] D --> H[Audit Log] E --> H[Audit Log] F --> H[Audit Log] G --> I[Workspace Storage] ``` ### Components * **MCP Gateway** – Accepts connections (gRPC + WebSocket for streaming). * **Session Manager** – Handles authentication, session lifecycle, and capability negotiation. * **Resource Manager** – File system abstraction with policy enforcement. * **Execution Manager** – Runs commands/tools inside sandboxed runtimes (Docker). * **Policy Engine** – Enforces access rules and maintains audit logs. * **Audit Log** – Immutable logging system for accountability. * **Sandbox Runtime** – Docker containers with controlled resources. * **Workspace Storage** – Persistent project storage (bind-mounted or virtual FS). --- ## 3. API Surface ### Session APIs * `InitSession(request: Capabilities) -> SessionInfo` * `ListCapabilities() -> Capabilities` ### Resource APIs * `GetFile(path) -> FileContent` * `WriteFile(path, content) -> Status` * `ListFiles(path) -> FileList` ### Execution APIs * `RunCommand(command, args, options) -> Stream<Log|Result>` * `CancelExecution(executionId) -> Status` ### Policy APIs * `GetPolicies() -> PolicyList` * `SetPolicy(policy) -> Status` ### Collaboration APIs * `JoinWorkspace(workspaceId) -> SessionInfo` * `BroadcastMessage(message) -> Ack` --- ## 4. Security Model * **Sandbox Isolation** – Each AI coder runs commands in a separate Docker container. * **Resource Policy** – Explicit allowlist for file operations and commands. * **Auditability** – All actions logged with session ID, timestamp, and parameters. * **Capability Negotiation** – Clients must declare supported tools/capabilities. * **Rate Limiting** – Prevent misuse by throttling command execution. --- ## 5. Data Models ```ts interface SessionInfo { sessionId: string; capabilities: string[]; } interface FileContent { path: string; content: string; } interface ExecutionResult { executionId: string; exitCode: number; logs: string[]; } interface Policy { id: string; rules: string[]; } ``` --- ## 6. Roadmap ### Phase 1 (MVP) * Session management * File read/write * Command execution in sandbox * Basic logging ### Phase 2 * Policy engine * Multi-agent collaboration * Extensible tooling system ### Phase 3 * Advanced audit + monitoring * SDKs (JS/Python) * CLI for developers --- ## 7. Detailed API Spec ### OpenAPI Spec (YAML Skeleton) ```yaml openapi: 3.0.3 info: title: MCP Server API version: 1.0.0 servers: - url: http://localhost:8080 paths: /session/init: post: summary: Initialize a session requestBody: required: true content: application/json: schema: $ref: '#/components/schemas/Capabilities' responses: '200': description: Session info content: application/json: schema: $ref: '#/components/schemas/SessionInfo' components: schemas: Capabilities: type: object properties: tools: type: array items: type: string SessionInfo: type: object properties: sessionId: type: string capabilities: type: array items: type: string ``` ### gRPC Proto Skeleton ```proto syntax = "proto3"; service MCPServer { rpc InitSession(Capabilities) returns (SessionInfo); rpc ListCapabilities(Empty) returns (Capabilities); rpc GetFile(FileRequest) returns (FileContent); rpc WriteFile(FileContent) returns (Status); rpc RunCommand(CommandRequest) returns (stream ExecutionLog); rpc CancelExecution(ExecutionId) returns (Status); } message Capabilities { repeated string tools = 1; } message SessionInfo { string sessionId = 1; repeated string capabilities = 2; } message FileRequest { string path = 1; } message FileContent { string path = 1; string content = 2; } message CommandRequest { string command = 1; repeated string args = 2; } message ExecutionLog { string executionId = 1; string logLine = 2; } message ExecutionId { string executionId = 1; } message Status { bool success = 1; string message = 2; } ``` --- ## 8. Prototype Server Scaffold (TypeScript) ```ts import express from 'express'; const app = express(); app.use(express.json()); // Session app.post('/session/init', (req, res) => { const sessionId = Date.now().toString(); res.json({ sessionId, capabilities: req.body.tools }); }); // Resource app.get('/files/:path', (req, res) => { // TODO: sandboxed FS read res.json({ path: req.params.path, content: "// file content" }); }); // Execution app.post('/execute', (req, res) => { // TODO: sandboxed exec res.json({ executionId: "exec-123", exitCode: 0, logs: ["started", "done"] }); }); app.listen(8080, () => console.log("MCP Server running on :8080")); ``` --- ## 9. AI Development Requirements For an AI to autonomously develop and maintain the MCP server, it needs: ### Environment Configuration * **Dev containers**: Dockerfile + `docker-compose.yml`. * **Pinned toolchain**: Node.js + TypeScript versions. * **Preconfigured tooling**: ESLint, Prettier, Jest. * **Git hooks**: enforce lint/tests before commit. ### Coding Conventions & Guidelines * Style guide: naming, error handling, folder structure. * Documentation: JSDoc/TSDoc required for all functions. * Security rules: deny-by-default FS access, no external net by default. * “Definition of Done”: feature is complete only when tested + documented. ### Testing Framework & Test Cases * Jest/Mocha for unit tests. * Integration test harness simulating client ↔ server ↔ sandbox. * Pre-seeded tests (e.g., `RunCommand` returns logs within timeout). * Coverage minimum: 80%. ### Release & Distribution * Semantic versioning (SemVer). * CI/CD pipelines (GitHub Actions/GitLab CI). * SDK auto-build + publish. * Documentation auto-generated from OpenAPI + gRPC. ### Feedback & Self-Improvement * Error log collection with structured JSON. * GitHub issue templates for bugs/features. * AI self-review process: analyze logs, propose patches. ### Seed Examples & Recipes * Prebuilt workflows: * Bootstrap a Next.js app. * Refactor existing repo. * Run & fix tests. * These act as **ground truth scenarios** for validation. --- ## 10. AI Meta-Rules & Workflow Context This defines **how the AI should behave** while building and maintaining the MCP server. ### Workflow Rules * Always follow PRD + Roadmap as the **single source of truth**. * Break work into **small, testable increments**. * Each increment must include: code, tests, documentation, verification. * Never leave dead code, TODOs, or partial implementations. ### Decision Rules * If spec conflict arises → default to **security & simplicity**. * If multiple valid approaches exist → prefer **standards (OpenAPI, gRPC, Docker)**. * If stuck → draft a mini design doc before coding. ### Collaboration Model * Treat development as a **team process**: open issues, write PRDs for new features, clear commit messages. * Each change must include code + tests + docs + changelog update + security check. ### Governance * **Deny by default**: no unrestricted network or FS access. * **Audit everything**: every action logged with session ID and timestamp. * **Traceability**: each feature links back to a PRD or roadmap item. ### Context Flow for AI 1. Load PRD + Roadmap + Dev Requirements. 2. Inspect current repo state. 3. Select next roadmap task. 4. Plan → implement → test → document. 5. Verify against “Definition of Done.” 6. Commit, push, release milestone if applicable.

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Nom-nom-hub/fullstack-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server