Skip to main content
Glama
qdrant_init.py901 B
# vectorstore/qdrant_init.py from qdrant_client import QdrantClient from qdrant_client.http.models import Distance, VectorParams import os def connect_qdrant(host: str | None = None, port: int | None = None) -> QdrantClient: """ Prefer local mode if QDRANT_LOCAL_PATH is set; otherwise use host/port. """ local_path = os.getenv("QDRANT_LOCAL_PATH") if local_path: # Persistent local storage in the given folder (no Docker needed) return QdrantClient(path=local_path) return QdrantClient(host=host or "localhost", port=port or 6333) def ensure_collection(client: QdrantClient, name: str, dim: int = 3072): existing = [c.name for c in client.get_collections().collections] if name not in existing: client.create_collection( collection_name=name, vectors_config=VectorParams(size=dim, distance=Distance.COSINE), )

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Nithishkaranam2002/Finrag--mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server