Skip to main content
Glama

FinRAG-MCP

README.md3.06 kB
# FinRAG-MCP **FinRAG-MCP** is a **Role-Based Access Control (RBAC) Retrieval-Augmented Generation (RAG)** system, integrated with the **Model Context Protocol (MCP)**. It lets you query company documents (Engineering, Finance, HR, Marketing, General) securely — each role only sees what it’s allowed to. ✅ Works with **Claude Desktop (MCP tools)** ✅ Optional **Streamlit UI** + **FastAPI gateway** ✅ Uses **Qdrant (local)** for vector search ✅ Documents enriched with **metadata + citations** --- ## 🚀 Why this project - **Secure answers** → Employees, Managers, and C-Level see different data (RBAC). - **Trusted output** → Every response includes sources and file chunks. - **Flexible** → Claude MCP integration + standalone UI. - **Practical** → Handles Markdown, CSV, reports, handbooks, financial summaries. --- ## 📂 Project Structure # FinRAG-MCP **FinRAG-MCP** is a **Role-Based Access Control (RBAC) Retrieval-Augmented Generation (RAG)** system, integrated with the **Model Context Protocol (MCP)**. It lets you query company documents (Engineering, Finance, HR, Marketing, General) securely — each role only sees what it’s allowed to. ✅ Works with **Claude Desktop (MCP tools)** ✅ Optional **Streamlit UI** + **FastAPI gateway** ✅ Uses **Qdrant (local)** for vector search ✅ Documents enriched with **metadata + citations** --- ## 🚀 Why this project - **Secure answers** → Employees, Managers, and C-Level see different data (RBAC). - **Trusted output** → Every response includes sources and file chunks. - **Flexible** → Claude MCP integration + standalone UI. - **Practical** → Handles Markdown, CSV, reports, handbooks, financial summaries. --- ## 📂 Project Structure --- ## ⚙️ Setup ``bash # Clone repo git clone https://github.com/YOUR_GITHUB/finrag-mcp.git cd finrag-mcp # Create venv with uv uv venv .venv source .venv/bin/activate uv sync # Add secrets cat > env/.env << 'EOF' OPENAI_API_KEY=sk-REPLACE_ME OPENAI_MODEL=gpt-4o-mini EMBED_MODEL=text-embedding-3-large QDRANT_LOCAL_PATH=.qdrant_local QDRANT_COLLECTION_PREFIX=finrag FINRAG_ROLE=EMPLOYEE EOF # Ingest docs uv run python -m ingest.run_ingest --data-root ./data Run Options 1) Claude MCP (Recommended) Open Claude Desktop → Settings → Developer → Local MCP servers Add: Command: .../finrag-mcp/.venv/bin/python Args: -m mcp_server.server Env: from .env Claude can now call tools: set_role("FINANCE") search("Q4 2024 revenue drivers", top_k=5) # Start gateway uv run uvicorn gateway.app:app --port 8000 # Start UI uv run streamlit run ui/app.py --server.port 8501 Example Queries Employee: “What does the handbook say about leave approval?” Engineering: “List services in the architecture doc.” Finance: “Summarize Q4 revenue drivers.” HR: “What’s the rule for sick leave >2 days?” Marketing: “Which 2024 campaigns had the best ROI?”

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Nithishkaranam2002/Finrag--mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server