Skip to main content
Glama

MCP Orchestration Server

ai_assistant_agent.py4.49 kB
#!/usr/bin/env python3 """ AI Assistant Agent - Future Advanced AI assistant agent prepared for future activation """ # import asyncio from datetime import datetime from typing import Dict,Any # import logging # Add project root to path import sys from pathlib import Path sys.path.insert(0, str(Path(__file__).parent.parent.parent)) from agents.base_agent import BaseMCPAgent, AgentCapability, MCPMessage # Agent metadata for auto-discovery AGENT_METADATA = { "id": "ai_assistant_agent", "name": "AI Assistant Agent", "version": "1.0.0", "author": "MCP System", "description": "Advanced AI assistant with natural language processing and reasoning capabilities", "category": "ai", "status": "future", "dependencies": ["openai", "anthropic", "transformers"], "auto_load": False, "priority": 1, "health_check_interval": 60, "max_failures": 3, "recovery_timeout": 120, "future_requirements": [ "AI API credentials (OpenAI, Anthropic, etc.)", "Natural language processing models", "Reasoning and conversation capabilities", "Integration with external AI services" ] } class AIAssistantAgent(BaseMCPAgent): """AI Assistant Agent for advanced natural language processing - future implementation.""" def __init__(self): capabilities = [ AgentCapability( name="natural_language_processing", description="Advanced natural language understanding and generation", input_types=["text", "dict"], output_types=["dict", "text"], methods=["process", "chat", "reason", "analyze", "info"], version="1.0.0" ) ] super().__init__("ai_assistant_agent", "AI Assistant Agent", capabilities) self.failure_count = 0 self.last_health_check = datetime.now() self.is_future = True # Marked as future self.logger.info("AI Assistant Agent initialized (FUTURE)") async def health_check(self) -> Dict[str, Any]: """Health check for future agent.""" return { "agent_id": self.agent_id, "status": "future", "reason": "Agent prepared for future activation", "last_check": datetime.now().isoformat(), "failure_count": self.failure_count, "version": AGENT_METADATA["version"], "can_activate": False, "future_requirements": AGENT_METADATA["future_requirements"] } async def handle_process(self, message: MCPMessage) -> Dict[str, Any]: """Handle process requests for future agent.""" return { "status": "future", "message": "AI Assistant Agent is prepared for future activation. Advanced AI capabilities not yet available.", "agent": self.agent_id, "version": AGENT_METADATA["version"], "future_capabilities": [ "Natural language understanding", "Conversational AI", "Reasoning and analysis", "Multi-modal processing" ] } async def handle_info(self, message: MCPMessage) -> Dict[str, Any]: """Handle info request for future agent.""" return { "status": "future", "info": self.get_info(), "metadata": AGENT_METADATA, "health": await self.health_check(), "planned_features": [ "Integration with OpenAI GPT models", "Anthropic Claude integration", "Local transformer models", "Advanced reasoning capabilities", "Multi-turn conversations", "Context-aware responses" ], "agent": self.agent_id } # Agent registration functions def get_agent_metadata(): """Get agent metadata for auto-discovery.""" return AGENT_METADATA def create_agent(): """Create and return the agent instance.""" return AIAssistantAgent() def get_agent_info(): """Get agent information for compatibility.""" return { "name": "AI Assistant Agent", "description": "Advanced AI assistant (future implementation)", "version": "1.0.0", "author": "MCP System", "capabilities": ["natural_language_processing", "conversational_ai", "reasoning"], "category": "ai", "status": "future" }

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Nisarg-123-web/MCP2'

If you have feedback or need assistance with the MCP directory API, please join our Discord server