Skip to main content
Glama

Mode Manager MCP

remember

Store and organize user information like coding preferences, project details, and workflow habits for future reference. Automatically detects scope and language from context, prompting for clarification when needed.

Instructions

Store user information persistently for future conversations. When users share preferences, coding standards, project details, or any context they want remembered, use this tool. Extract the key information from natural language and store it appropriately. The system automatically detects scope (user/workspace) and language specificity from context. For ambiguous cases, you will receive clarification prompts to ask the user. Examples of what to remember: coding preferences ('I like detailed docstrings'), project specifics ('This app uses PostgreSQL'), language standards ('For Python, use type hints'), workflow preferences ('Always run tests before committing'). Use only the memory_item parameter with natural language - the system handles scope detection.

Input Schema

NameRequiredDescriptionDefault
languageNo
memory_itemYesThe information to remember
scopeNoMemory scope: 'user' (default) or 'workspace'user

Input Schema (JSON Schema)

{ "properties": { "language": { "anyOf": [ { "type": "string" }, { "type": "null" } ], "default": null, "title": "Language" }, "memory_item": { "description": "The information to remember", "title": "Memory Item", "type": "string" }, "scope": { "default": "user", "description": "Memory scope: 'user' (default) or 'workspace'", "title": "Scope", "type": "string" } }, "required": [ "memory_item" ], "type": "object" }

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/NiclasOlofsson/mode-manager-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server