Skip to main content
Glama

Mode Manager MCP

memory_optimizer.py15.7 kB
""" Memory Optimization Implementation with Full Backward Compatibility. This implementation gracefully handles existing memory files without metadata and gradually migrates them to the new enhanced format. """ import datetime import logging import re from pathlib import Path from typing import Any, Dict, Optional, Tuple from fastmcp import Context from .simple_file_ops import ( FileOperationError, _is_in_git_repository, parse_frontmatter, parse_frontmatter_file, write_frontmatter_file, ) from .types import MemoryScope logger = logging.getLogger(__name__) class MemoryOptimizer: """Handles memory file optimization with full backward compatibility.""" def __init__(self, instruction_manager: Any) -> None: self.instruction_manager = instruction_manager def _get_memory_metadata(self, file_path: Path) -> Dict[str, Any]: """ Extract or initialize metadata for a memory file. Handles backward compatibility by providing defaults for missing metadata. """ try: frontmatter, _ = parse_frontmatter_file(file_path) # Provide backward-compatible defaults for missing metadata metadata = { "lastOptimized": frontmatter.get("lastOptimized"), "entryCount": frontmatter.get("entryCount", 0), "optimizationVersion": frontmatter.get("optimizationVersion", 0), "autoOptimize": frontmatter.get("autoOptimize", True), # Default to enabled "sizeThreshold": frontmatter.get("sizeThreshold", 50000), # 50KB "entryThreshold": frontmatter.get("entryThreshold", 20), # 20 entries "timeThreshold": frontmatter.get("timeThreshold", 7), # 7 days } return metadata except Exception as e: logger.warning(f"Could not read metadata from {file_path}: {e}") # Return safe defaults for corrupted files return { "lastOptimized": None, "entryCount": 0, "optimizationVersion": 0, "autoOptimize": True, "sizeThreshold": 50000, "entryThreshold": 20, "timeThreshold": 7, } def _count_memory_entries(self, content: str) -> int: """ Count memory entries in the content. Handles various formats: - **timestamp:** content - - timestamp: content - timestamp: content (without dashes) """ patterns = [ r"^\s*-\s*\*\*\d{4}-\d{2}-\d{2}\s+\d{2}:\d{2}\*\*:.*$", # - **2025-08-09 10:30:** content r"^\s*-\s*\d{4}-\d{2}-\d{2}\s+\d{2}:\d{2}:.*$", # - 2025-08-09 10:30: content r"^\s*\*\*\d{4}-\d{2}-\d{2}\s+\d{2}:\d{2}\*\*:.*$", # **2025-08-09 10:30:** content (no dash) r"^\s*\d{4}-\d{2}-\d{2}\s+\d{2}:\d{2}:.*$", # 2025-08-09 10:30: content (no formatting) ] total_count = 0 lines = content.split("\n") for pattern in patterns: count = len([line for line in lines if re.match(pattern, line, re.MULTILINE)]) total_count = max(total_count, count) # Use the highest count found # Fallback: count lines starting with "- **" (most common format) if total_count == 0: fallback_count = len([line for line in lines if line.strip().startswith("- **")]) total_count = fallback_count return total_count def _should_optimize_memory(self, file_path: Path, metadata: Dict[str, Any]) -> Tuple[bool, str]: """ Determine if memory file should be optimized. Returns (should_optimize, reason) """ # Check if auto-optimization is disabled if not metadata.get("autoOptimize", True): return False, "Auto-optimization disabled" # File size check file_size = file_path.stat().st_size size_threshold = metadata.get("sizeThreshold", 50000) if file_size > size_threshold: return True, f"File size ({file_size} bytes) exceeds threshold ({size_threshold} bytes)" # Entry count check try: _, content = parse_frontmatter_file(file_path) current_entries = self._count_memory_entries(content) last_count = metadata.get("entryCount", 0) entry_threshold = metadata.get("entryThreshold", 20) new_entries = current_entries - last_count if new_entries >= entry_threshold: return True, f"New entries ({new_entries}) exceed threshold ({entry_threshold})" except Exception as e: logger.warning(f"Could not count entries: {e}") # Time-based check last_optimized = metadata.get("lastOptimized") if last_optimized: try: last_opt_time = datetime.datetime.fromisoformat(last_optimized.replace("Z", "+00:00")) time_threshold = metadata.get("timeThreshold", 7) # days days_since = (datetime.datetime.now(datetime.timezone.utc) - last_opt_time).days if days_since >= time_threshold: return True, f"Days since last optimization ({days_since}) exceed threshold ({time_threshold})" except Exception as e: logger.warning(f"Could not parse last optimization time: {e}") # If we can't parse the time, consider it old enough to optimize return True, "Could not determine last optimization time" else: # No last optimization time means this is an existing file without metadata return True, "No previous optimization recorded (legacy file)" return False, "No optimization criteria met" def _update_metadata(self, file_path: Path, content: Optional[str] = None) -> bool: """ Update metadata in a memory file's frontmatter. Gracefully handles files with or without existing metadata. """ try: frontmatter, body_content = parse_frontmatter_file(file_path) # Count current entries entry_count = self._count_memory_entries(body_content) # Update metadata while preserving existing frontmatter frontmatter.update( { "lastOptimized": datetime.datetime.now(datetime.timezone.utc).isoformat(), "entryCount": entry_count, "optimizationVersion": frontmatter.get("optimizationVersion", 0) + 1, } ) # Set defaults for new metadata fields if they don't exist if "autoOptimize" not in frontmatter: frontmatter["autoOptimize"] = True if "sizeThreshold" not in frontmatter: frontmatter["sizeThreshold"] = 50000 if "entryThreshold" not in frontmatter: frontmatter["entryThreshold"] = 20 if "timeThreshold" not in frontmatter: frontmatter["timeThreshold"] = 7 # Use provided content or keep existing body final_content = content if content else body_content return write_frontmatter_file(file_path, frontmatter, final_content, create_backup=True) except Exception as e: logger.error(f"Failed to update metadata for {file_path}: {e}") return False async def _optimize_memory_with_ai(self, ctx: Context, content: str) -> Optional[str]: """Safely optimize memory content using AI sampling with comprehensive error handling.""" try: response = await ctx.sample( f"""Please optimize this AI memory file by: 1. **Preserve ALL information** - Do not delete any memories or important details 2. **Remove duplicates** - Consolidate identical or very similar entries 3. **Organize by sections** - Group related memories under clear headings: - ## Personal Context (name, location, role, etc.) - ## Professional Context (team, goals, projects, etc.) - ## Technical Preferences (coding styles, tools, workflows) - ## Communication Preferences (style, feedback preferences) - ## Universal Laws (strict rules that must always be followed) - ## Policies (guidelines and standards) - ## Suggestions/Hints (recommendations and tips) - ## Memories/Facts (chronological events and information) 4. **Maintain timestamps** - Keep all original timestamps for traceability 5. **Improve formatting** - Use consistent markdown formatting 6. **Preserve frontmatter structure** - Keep the YAML header intact Return ONLY the optimized content (including frontmatter), nothing else: {content}""", temperature=0.1, # Very low for consistency max_tokens=4000, model_preferences=["gpt-4", "claude-3-sonnet"], # Prefer more reliable models ) if response and hasattr(response, "text"): text_attr = getattr(response, "text", None) optimized_content = str(text_attr).strip() if text_attr else None # Basic validation - ensure we still have a memories section if optimized_content and ("## Memories" in optimized_content or "# Personal" in optimized_content): return optimized_content else: logger.warning("AI optimization removed essential sections, reverting to original") return None else: logger.warning(f"AI optimization returned unexpected type or no text: {type(response)}") return None except Exception as e: logger.info(f"AI optimization failed: {e}") return None async def optimize_memory_if_needed(self, file_path: Path, ctx: Context, force: bool = False) -> Dict[str, Any]: """ Main optimization method with full backward compatibility. Args: file_path: Path to memory file ctx: FastMCP context for AI sampling force: Force optimization regardless of criteria Returns: Dict with optimization results """ try: # Get metadata (with backward compatibility) metadata = self._get_memory_metadata(file_path) # Check if optimization is needed if not force: should_optimize, reason = self._should_optimize_memory(file_path, metadata) if not should_optimize: return {"status": "skipped", "reason": reason, "metadata": metadata} else: reason = "Forced optimization" # Read current content frontmatter, content = parse_frontmatter_file(file_path) full_content = f"---\n" for key, value in frontmatter.items(): if isinstance(value, str) and ('"' in value or "'" in value): full_content += f'{key}: "{value}"\n' else: full_content += f"{key}: {value}\n" full_content += f"---\n{content}" logger.info(f"Starting memory optimization: {reason}") # Try AI optimization optimized_content = await self._optimize_memory_with_ai(ctx, full_content) if optimized_content: # Parse optimized content directly from string optimized_frontmatter, optimized_body = parse_frontmatter(optimized_content) # Update metadata in the optimized frontmatter entry_count = self._count_memory_entries(optimized_body) optimized_frontmatter.update( { "lastOptimized": datetime.datetime.now(datetime.timezone.utc).isoformat(), "entryCount": entry_count, "optimizationVersion": frontmatter.get("optimizationVersion", 0) + 1, } ) # Preserve user preferences from original frontmatter for key in ["autoOptimize", "sizeThreshold", "entryThreshold", "timeThreshold"]: if key in frontmatter: optimized_frontmatter[key] = frontmatter[key] elif key not in optimized_frontmatter: # Set sensible defaults for new files defaults = {"autoOptimize": True, "sizeThreshold": 50000, "entryThreshold": 20, "timeThreshold": 7} optimized_frontmatter[key] = defaults[key] # Write optimized content success = write_frontmatter_file(file_path, optimized_frontmatter, optimized_body, create_backup=True) # Determine if backup was actually created (skipped for git repos) backup_created = False if _is_in_git_repository(file_path) else success if success: logger.info(f"Memory optimization completed successfully") return {"status": "optimized", "reason": reason, "method": "ai", "entries_before": metadata.get("entryCount", 0), "entries_after": entry_count, "backup_created": backup_created} else: return {"status": "error", "reason": "Failed to write optimized content"} else: # AI optimization failed, just update metadata logger.info("AI optimization unavailable, updating metadata only") success = self._update_metadata(file_path, content) # Determine if backup was actually created (skipped for git repos) backup_created = False if _is_in_git_repository(file_path) else success return {"status": "metadata_updated", "reason": reason, "method": "metadata_only", "ai_available": False, "backup_created": backup_created} except Exception as e: logger.error(f"Memory optimization failed: {e}") return {"status": "error", "reason": str(e)} def get_memory_stats(self, file_path: Path) -> Dict[str, Any]: """ Get statistics about a memory file. Returns metadata and file information for user inspection. """ try: metadata = self._get_memory_metadata(file_path) frontmatter, content = parse_frontmatter_file(file_path) current_entries = self._count_memory_entries(content) file_size = file_path.stat().st_size # Calculate optimization eligibility should_optimize, reason = self._should_optimize_memory(file_path, metadata) return { "file_path": str(file_path), "file_size_bytes": file_size, "current_entries": current_entries, "last_optimized": metadata.get("lastOptimized"), "optimization_version": metadata.get("optimizationVersion", 0), "auto_optimize_enabled": metadata.get("autoOptimize", True), "size_threshold": metadata.get("sizeThreshold", 50000), "entry_threshold": metadata.get("entryThreshold", 20), "time_threshold_days": metadata.get("timeThreshold", 7), "optimization_eligible": should_optimize, "optimization_reason": reason, "entries_since_last_optimization": current_entries - metadata.get("entryCount", 0), } except Exception as e: return {"error": f"Could not read memory file stats: {e}"}

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/NiclasOlofsson/mode-manager-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server