Skip to main content
Glama

MCP Search Server

by Nghiauet
test_augmented_llm_azure.py38.8 kB
import json from unittest.mock import AsyncMock, MagicMock import pytest from azure.ai.inference.models import ( ChatResponseMessage, UserMessage, ToolMessage, ChatCompletionsToolCall, FunctionCall, TextContentItem, ImageContentItem, ImageUrl, SystemMessage, AssistantMessage, ) from pydantic import BaseModel from mcp.types import ( TextContent, ImageContent, EmbeddedResource, TextResourceContents, SamplingMessage, CallToolResult, ) from mcp_agent.workflows.llm.augmented_llm_azure import ( AzureAugmentedLLM, RequestParams, MCPAzureTypeConverter, ) class TestAzureAugmentedLLM: """ Tests for the AzureAugmentedLLM class. """ @pytest.fixture def mock_llm(self, mock_context): """ Creates a mock Azure LLM instance with common mocks set up. """ # Use a real AzureSettings object for config.azure to satisfy Pydantic validation from mcp_agent.config import AzureSettings azure_settings = AzureSettings( api_key="test_key", endpoint="https://test-endpoint.cognitiveservices.azure.com/openai/deployments/gpt-4o-mini", default_model="gpt-4o-mini", api_version="2025-01-01-preview", credential_scopes=["https://cognitiveservices.azure.com/.default"], ) mock_context.config.azure = azure_settings # Create LLM instance llm = AzureAugmentedLLM(name="test", context=mock_context) # Apply common mocks llm.history = MagicMock() llm.history.get = MagicMock(return_value=[]) llm.history.set = MagicMock() llm.select_model = AsyncMock(return_value="gpt-4o-mini") llm._log_chat_progress = MagicMock() llm._log_chat_finished = MagicMock() # Mock the Azure client llm.azure_client = MagicMock() llm.azure_client.complete = AsyncMock() # Mock executor.execute_many to return the tool results as expected llm.executor.execute_many = AsyncMock( side_effect=lambda tool_tasks: [ # tool_tasks is a list of coroutines ToolMessage(tool_call_id="tool_123", content="Tool result") if hasattr(task, "cr_code") or hasattr(task, "__await__") # crude check for coroutine else task for task in tool_tasks ] ) return llm @pytest.fixture def default_usage(self): """ Returns a default usage object for testing. """ return { "completion_tokens": 100, "prompt_tokens": 150, "total_tokens": 250, } @staticmethod def create_text_response(text, finish_reason="stop", usage=None): """ Creates a text response for testing. """ message = ChatResponseMessage( role="assistant", content=text, ) response = MagicMock() response.choices = [ MagicMock(message=message, finish_reason=finish_reason, index=0) ] response.id = "chatcmpl-123" response.created = 1677858242 response.model = "gpt-4o-mini" response.usage = usage return response @staticmethod def create_tool_use_response( tool_name, tool_args, tool_id, finish_reason="tool_calls", usage=None ): """ Creates a tool use response for testing. """ function_call = FunctionCall( name=tool_name, arguments=json.dumps(tool_args), ) tool_call = ChatCompletionsToolCall( id=tool_id, type="function", function=function_call, ) message = ChatResponseMessage( role="assistant", content=None, tool_calls=[tool_call], ) response = MagicMock() response.choices = [ MagicMock(message=message, finish_reason=finish_reason, index=0) ] response.id = "chatcmpl-123" response.created = 1677858242 response.model = "gpt-4o-mini" response.usage = usage return response # Test 1: Basic Text Generation @pytest.mark.asyncio async def test_basic_text_generation( self, mock_llm: AzureAugmentedLLM, default_usage ): """ Tests basic text generation without tools. """ # Setup mock executor mock_llm.executor.execute = AsyncMock( return_value=self.create_text_response( "This is a test response", usage=default_usage ) ) # Call LLM with default parameters responses = await mock_llm.generate("Test query") # Assertions assert len(responses) == 1 assert responses[0].content == "This is a test response" assert mock_llm.executor.execute.call_count == 1 # Check the first call arguments passed to execute req = mock_llm.executor.execute.call_args_list[0][0][1] assert req.payload["model"] == "gpt-4o-mini" assert isinstance(req.payload["messages"][0], UserMessage) assert req.payload["messages"][0].content == "Test query" # Test 2: Generate String @pytest.mark.asyncio async def test_generate_str(self, mock_llm: AzureAugmentedLLM, default_usage): """ Tests the generate_str method which returns string output. """ # Setup mock executor mock_llm.executor.execute = AsyncMock( return_value=self.create_text_response( "This is a test response", usage=default_usage ) ) # Call LLM with default parameters response_text = await mock_llm.generate_str("Test query") # Assertions assert response_text == "This is a test response" assert mock_llm.executor.execute.call_count == 1 # Test 3: Generate Structured Output @pytest.mark.asyncio async def test_generate_structured( self, mock_llm: AzureAugmentedLLM, default_usage ): """ Tests structured output generation using Azure's JsonSchemaFormat. """ # Define a simple response model class TestResponseModel(BaseModel): name: str value: int # Set up the mock for text generation mock_llm.executor.execute = AsyncMock( return_value=self.create_text_response( '{"name": "Test", "value": 42}', usage=default_usage ) ) # Call the method result = await mock_llm.generate_structured("Test query", TestResponseModel) # Assertions assert isinstance(result, TestResponseModel) assert result.name == "Test" assert result.value == 42 # Verify metadata was set correctly req = mock_llm.executor.execute.call_args_list[0][0][1] assert "response_format" in req.payload assert req.payload["response_format"].name == "TestResponseModel" # Test 4: With History @pytest.mark.asyncio async def test_with_history(self, mock_llm: AzureAugmentedLLM, default_usage): """ Tests generation with message history. """ # Setup history history_message = UserMessage(content="Previous message") mock_llm.history.get = MagicMock(return_value=[history_message]) # Setup mock executor mock_llm.executor.execute = AsyncMock( return_value=self.create_text_response( "Response with history", usage=default_usage ) ) # Call LLM with history enabled responses = await mock_llm.generate( "Follow-up query", RequestParams(use_history=True) ) # Assertions assert len(responses) == 1 # Verify history was included in the request req = mock_llm.executor.execute.call_args_list[0][0][1] assert len(req.payload["messages"]) >= 2 assert req.payload["messages"][0] == history_message assert isinstance(req.payload["messages"][1], UserMessage) assert req.payload["messages"][1].content == "Follow-up query" # Test 5: Without History @pytest.mark.asyncio async def test_without_history(self, mock_llm: AzureAugmentedLLM, default_usage): """ Tests generation without message history. """ # Mock the history method to track if it gets called mock_history = MagicMock(return_value=[UserMessage(content="Ignored history")]) mock_llm.history.get = mock_history # Setup mock executor mock_llm.executor.execute = AsyncMock( return_value=self.create_text_response( "Response without history", usage=default_usage ) ) # Call LLM with history disabled await mock_llm.generate("New query", RequestParams(use_history=False)) # Assertions # Verify history.get() was not called since use_history=False mock_history.assert_not_called() # Check arguments passed to execute req = mock_llm.executor.execute.call_args[0][1] assert len(req.payload["messages"]) == 2 assert req.payload["messages"][0].content == "New query" assert req.payload["messages"][1].content == "Response without history" # Test 6: Tool Usage @pytest.mark.asyncio async def test_tool_usage(self, mock_llm, default_usage): """ Tests tool usage in the LLM. """ # Create a custom side effect function for execute call_count = 0 async def custom_side_effect(*args, **kwargs): nonlocal call_count call_count += 1 # First call is for the regular execute (tool call request) if call_count == 1: # Return a mock ChatCompletions object with .choices[0].message having tool_calls mock_response = MagicMock() mock_response.choices = [ MagicMock( message=self.create_tool_use_response( "test_tool", {"query": "test query"}, "tool_123", usage=default_usage, ) .choices[0] .message, finish_reason="tool_calls", index=0, ) ] return mock_response # Third call is for the final response (normal message) else: mock_response = MagicMock() mock_response.choices = [ MagicMock( message=self.create_text_response( "Final response after tool use", usage=default_usage ) .choices[0] .message, finish_reason="stop", index=0, ) ] return mock_response # Setup mocks mock_llm.executor.execute = AsyncMock(side_effect=custom_side_effect) # executor.execute_many is already set up in the fixture to return the tool result # Call LLM responses = await mock_llm.generate("Test query with tool") # Assertions assert len(responses) == 3 assert hasattr(responses[0], "tool_calls") assert responses[0].tool_calls is not None assert responses[0].tool_calls[0].function.name == "test_tool" assert responses[1].tool_call_id == "tool_123" assert responses[2].content == "Final response after tool use" # Test 7: Tool Error Handling @pytest.mark.asyncio async def test_tool_error_handling(self, mock_llm, default_usage): """ Tests handling of errors from tool calls. """ # Setup mocks mock_llm.executor.execute = AsyncMock( side_effect=[ self.create_tool_use_response( "test_tool", {"query": "test query"}, "tool_123", usage=default_usage, ), self.create_text_response( "Response after tool error", usage=default_usage ), ] ) mock_llm.executor.execute_many = AsyncMock( return_value=[ ToolMessage( tool_call_id="tool_123", content="Tool execution failed with error", ) ] ) # Call LLM responses = await mock_llm.generate("Test query with tool error") # Assertions assert len(responses) == 3 assert responses[-1].content == "Response after tool error" # Test 8: API Error Handling @pytest.mark.asyncio async def test_api_error_handling(self, mock_llm): """ Tests handling of API errors. """ # Setup mock executor to raise an exception mock_llm.executor.execute = AsyncMock(return_value=Exception("API Error")) # Call LLM responses = await mock_llm.generate("Test query with API error") # Assertions assert len(responses) == 0 # Should return empty list on error assert mock_llm.executor.execute.call_count == 1 # Test 9: Model Selection @pytest.mark.asyncio async def test_model_selection(self, mock_llm, default_usage): """ Tests model selection logic. """ # Reset the mock to verify it's called mock_llm.select_model = AsyncMock(return_value="gpt-4-turbo") # Setup mock executor mock_llm.executor.execute = AsyncMock( return_value=self.create_text_response( "Model selection test", usage=default_usage ) ) # Call LLM with a specific model in request_params request_params = RequestParams(model="gpt-4-custom") await mock_llm.generate("Test query", request_params) # Assertions assert mock_llm.select_model.call_count == 1 # Verify the model parameter was passed assert mock_llm.select_model.call_args[0][0].model == "gpt-4-custom" # Test 10: Request Parameters Merging @pytest.mark.asyncio async def test_request_params_merging(self, mock_llm, default_usage): """ Tests merging of request parameters with defaults. """ # Setup mock executor mock_llm.executor.execute = AsyncMock( return_value=self.create_text_response("Params test", usage=default_usage) ) # Create custom request params that override some defaults request_params = RequestParams( maxTokens=2000, temperature=0.8, max_iterations=5 ) # Call LLM with custom params await mock_llm.generate("Test query", request_params) # Get the merged params that were passed merged_params = mock_llm.get_request_params(request_params) # Assertions assert merged_params.maxTokens == 2000 # Our override assert merged_params.temperature == 0.8 # Our override assert merged_params.max_iterations == 5 # Our override # Should still have default model assert merged_params.model == mock_llm.default_request_params.model # Test 11: Type Conversion def test_type_conversion(self): """ Tests the MCPAzureTypeConverter for converting between Azure and MCP types. """ # Test conversion from Azure message to MCP result azure_message = ChatResponseMessage(role="assistant", content="Test content") mcp_result = MCPAzureTypeConverter.to_mcp_message_result(azure_message) assert mcp_result.role == "assistant" assert mcp_result.content.text == "Test content" # Test conversion from MCP message param to Azure message param mcp_message = SamplingMessage( role="user", content=TextContent(type="text", text="Test MCP content") ) azure_param = MCPAzureTypeConverter.from_mcp_message_param(mcp_message) assert azure_param.role == "user" # Test content conversion if isinstance(azure_param.content, str): assert azure_param.content == "Test MCP content" else: assert isinstance(azure_param.content, list) assert len(azure_param.content) == 1 assert isinstance(azure_param.content[0], TextContentItem) assert azure_param.content[0].text == "Test MCP content" # Test 12: Content Type Handling def test_content_type_handling(self): """ Tests handling of different content types in messages. """ # Test text content text_content = "Hello world" azure_message = ChatResponseMessage(role="assistant", content=text_content) converted = MCPAzureTypeConverter.to_mcp_message_result(azure_message) assert converted.content.text == text_content # Test content items list content_items = [ TextContentItem(text="Hello"), TextContentItem(text="World"), ] message_with_items = UserMessage(content=content_items) message_str = AzureAugmentedLLM.message_param_str(None, message_with_items) assert "Hello" in message_str assert "World" in message_str # Test 15: Error on Missing Azure Configuration def test_missing_azure_config(self, mock_context): """ Tests that an error is raised when Azure configuration is missing. """ # Remove Azure config mock_context.config.azure = None # Assert that initialization raises ValueError with pytest.raises(ValueError) as excinfo: AzureAugmentedLLM(name="test", context=mock_context) assert "Azure configuration not found" in str(excinfo.value) # Test 16: Direct Testing of execute_tool_call @pytest.mark.asyncio async def test_execute_tool_call_direct(self, mock_llm): """ Tests the execute_tool_call method directly. """ # Create a tool call function_call = FunctionCall( name="test_tool", arguments=json.dumps({"param1": "value1"}), ) tool_call = ChatCompletionsToolCall( id="tool_123", type="function", function=function_call, ) # Mock call_tool to return a result tool_result = CallToolResult( isError=False, content=[TextContent(type="text", text="Tool executed successfully")], ) mock_llm.call_tool = AsyncMock(return_value=tool_result) # Execute tool call result = await mock_llm.execute_tool_call(tool_call) # Assertions assert result is not None assert result.tool_call_id == "tool_123" assert result.content == "Tool executed successfully" mock_llm.call_tool.assert_called_once() call_args = mock_llm.call_tool.call_args[1] assert call_args["tool_call_id"] == "tool_123" assert call_args["request"].params.name == "test_tool" assert call_args["request"].params.arguments == {"param1": "value1"} # Test 17: Execute Tool Call with Invalid JSON @pytest.mark.asyncio async def test_execute_tool_call_invalid_json(self, mock_llm): """ Tests execute_tool_call with invalid JSON arguments. """ # Create a tool call with invalid JSON function_call = FunctionCall( name="test_tool", arguments="{'invalid': json}", # This is not valid JSON ) tool_call = ChatCompletionsToolCall( id="tool_123", type="function", function=function_call, ) # Patch call_tool as an AsyncMock to track calls from unittest.mock import AsyncMock mock_llm.call_tool = AsyncMock() # Execute tool call result = await mock_llm.execute_tool_call(tool_call) # Assertions assert result is not None assert result.tool_call_id == "tool_123" assert "Invalid JSON" in result.content # call_tool should not be called due to JSON parsing error assert not mock_llm.call_tool.called # Test 18: Test message_str Method def test_message_str(self): """ Tests the message_str method for different response types. """ # Test with content message_with_content = ChatResponseMessage( role="assistant", content="This is a test message" ) result = AzureAugmentedLLM.message_str(None, message_with_content) assert result == "This is a test message" # Test with None content tool_call = ChatCompletionsToolCall( id="tool_123", type="function", function=FunctionCall(name="test_tool", arguments="{}"), ) message_without_content = ChatResponseMessage( role="assistant", content=None, tool_calls=[tool_call], ) result = AzureAugmentedLLM.message_str(None, message_without_content) assert str(tool_call) in result assert "tool_calls" in result # Test 19: Test message_param_str Method with Various Content Types def test_message_param_str_with_various_content(self): """ Tests the message_param_str method with various content types. """ # Test with string content message_with_string = UserMessage(content="String content") result = AzureAugmentedLLM.message_param_str(None, message_with_string) assert result == "String content" # Test with text content items message_with_text_items = UserMessage( content=[ TextContentItem(text="Text item 1"), TextContentItem(text="Text item 2"), ] ) result = AzureAugmentedLLM.message_param_str(None, message_with_text_items) assert "Text item 1" in result assert "Text item 2" in result # Test with image content item image_url = ImageUrl( url="" ) message_with_image = UserMessage( content=[ImageContentItem(image_url=image_url)] ) result = AzureAugmentedLLM.message_param_str(None, message_with_image) assert "Image url:" in result assert "data:image/png;base64" in result # Test with None content message_without_content = UserMessage(content=None) result = AzureAugmentedLLM.message_param_str(None, message_without_content) assert result == "{'role': 'user'}" # Test 20: Test Helper Function mcp_content_to_azure_content @pytest.mark.parametrize("str_only", [True, False]) def test_mcp_content_to_azure_content(self, str_only): """ Tests the mcp_content_to_azure_content helper function. """ from mcp_agent.workflows.llm.augmented_llm_azure import ( mcp_content_to_azure_content, ) # Create test content text_content = TextContent(type="text", text="Test text") image_content = ImageContent( type="image", mimeType="image/png", data="iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAQAAAC1HAwCAAAAC0lEQVR42mNk+A8AAQUBAScY42YAAAAASUVORK5CYII=", ) # TextResourceContents requires a 'uri' field; provide a dummy value for testing text_resource = TextResourceContents( uri="resource://dummy", text="Resource text" ) embedded_resource = EmbeddedResource(resource=text_resource, type="resource") # Test with single text content result = mcp_content_to_azure_content([text_content], str_only=str_only) if str_only: assert isinstance(result, str) assert "Test text" in result else: assert isinstance(result, list) assert len(result) == 1 assert isinstance(result[0], TextContentItem) assert result[0].text == "Test text" # Test with multiple content types result = mcp_content_to_azure_content( [text_content, image_content, embedded_resource], str_only=str_only ) if str_only: assert isinstance(result, str) assert "Test text" in result assert "image/png" in result assert "Resource text" in result else: assert isinstance(result, list) assert len(result) == 3 assert isinstance(result[0], TextContentItem) assert isinstance(result[1], ImageContentItem) assert isinstance(result[2], TextContentItem) # Test 21: Test Helper Function azure_content_to_mcp_content def test_azure_content_to_mcp_content(self): """ Tests the azure_content_to_mcp_content helper function. """ from mcp_agent.workflows.llm.augmented_llm_azure import ( azure_content_to_mcp_content, ) # Test with string content string_content = "Simple string content" result = azure_content_to_mcp_content(string_content) assert len(result) == 1 assert isinstance(result[0], TextContent) assert result[0].text == "Simple string content" # Test with content items list content_items = [ TextContentItem(text="Text item"), ImageContentItem( image_url=ImageUrl( url="" ) ), ] result = azure_content_to_mcp_content(content_items) assert len(result) == 2 assert isinstance(result[0], TextContent) assert result[0].text == "Text item" assert isinstance(result[1], ImageContent) assert result[1].type == "image" assert result[1].mimeType == "image/png" # Test with None content result = azure_content_to_mcp_content(None) assert len(result) == 0 # Test 22: Test Helper Function image_url_to_mime_and_base64 def test_image_url_to_mime_and_base64(self): """ Tests the image_url_to_mime_and_base64 helper function. """ from mcp_agent.workflows.llm.augmented_llm_azure import ( image_url_to_mime_and_base64, ) # Valid image URL valid_url = ImageUrl( url="" ) mime_type, base64_data = image_url_to_mime_and_base64(valid_url) assert mime_type == "image/png" assert ( base64_data == "iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAQAAAC1HAwCAAAAC0lEQVR42mNk+A8AAQUBAScY42YAAAAASUVORK5CYII=" ) # Invalid image URL invalid_url = ImageUrl(url="invalid-data-url") with pytest.raises(ValueError) as excinfo: image_url_to_mime_and_base64(invalid_url) assert "Invalid image data URI" in str(excinfo.value) # Test 23: Test Helper Function typed_dict_extras def test_typed_dict_extras(self): """ Tests the typed_dict_extras helper function. """ from mcp_agent.workflows.llm.augmented_llm_azure import typed_dict_extras # Test with dict including excluded and non-excluded fields test_dict = { "field1": "value1", "field2": "value2", "exclude_me": "value3", "also_exclude": "value4", } result = typed_dict_extras(test_dict, ["exclude_me", "also_exclude"]) assert "field1" in result assert "field2" in result assert "exclude_me" not in result assert "also_exclude" not in result assert result["field1"] == "value1" assert result["field2"] == "value2" # Test with empty dict result = typed_dict_extras({}, ["any_field"]) assert result == {} # Test with no exclusions result = typed_dict_extras(test_dict, []) assert len(result) == 4 assert "exclude_me" in result # Test 24: Comprehensive Type Converter Tests def test_type_converter_comprehensive(self): """ Comprehensive tests for the MCPAzureTypeConverter. """ # Test to_mcp_message_param with different roles # User message user_message = SamplingMessage( role="user", content=TextContent(type="text", text="User content") ) azure_user = MCPAzureTypeConverter.from_mcp_message_param(user_message) assert azure_user.role == "user" # Assistant message assistant_message = SamplingMessage( role="assistant", content=TextContent(type="text", text="Assistant content") ) azure_assistant = MCPAzureTypeConverter.from_mcp_message_param( assistant_message ) assert azure_assistant.role == "assistant" # Unsupported role with pytest.raises(ValueError) as excinfo: MCPAzureTypeConverter.from_mcp_message_param( SamplingMessage( role="unsupported_role", content=TextContent(type="text", text="content"), ) ) assert "Input should be 'user' or 'assistant'" in str(excinfo.value) # Test 25: Parallel Tool Calls @pytest.mark.asyncio async def test_parallel_tool_calls(self, mock_llm, default_usage): """ Tests parallel tool calls where multiple tools are called in a single response. """ # Create tool calls function_call1 = FunctionCall( name="tool1", arguments=json.dumps({"param": "value1"}), ) function_call2 = FunctionCall( name="tool2", arguments=json.dumps({"param": "value2"}), ) tool_call1 = ChatCompletionsToolCall( id="call_1", type="function", function=function_call1, ) tool_call2 = ChatCompletionsToolCall( id="call_2", type="function", function=function_call2, ) # Create response with multiple tool calls message = ChatResponseMessage( role="assistant", content=None, tool_calls=[tool_call1, tool_call2], ) response = MagicMock() response.choices = [ MagicMock(message=message, finish_reason="tool_calls", index=0) ] response.id = "chatcmpl-123" response.created = 1677858242 response.model = "gpt-4o-mini" response.usage = default_usage # Setup mocks mock_llm.executor.execute = AsyncMock( side_effect=[ response, self.create_text_response( "Final response after parallel tools", usage=default_usage ), ] ) mock_llm.executor.execute_many = AsyncMock( return_value=[ ToolMessage(tool_call_id="call_1", content="Tool 1 result"), ToolMessage(tool_call_id="call_2", content="Tool 2 result"), ] ) # Enable parallel tool calls request_params = RequestParams(parallel_tool_calls=True) # Call LLM responses = await mock_llm.generate("Test parallel tools", request_params) # Assertions assert len(responses) >= 3 # Initial response, tool results, final response assert hasattr(responses[0], "tool_calls") assert len(responses[0].tool_calls) == 2 assert "tool1" in [tc.function.name for tc in responses[0].tool_calls] assert "tool2" in [tc.function.name for tc in responses[0].tool_calls] # Test 26: Multiple Iterations with Tool Calls @pytest.mark.asyncio async def test_multiple_iterations(self, mock_llm, default_usage): """ Tests multiple iterations of generate with multiple tool calls. """ # Setup mocks for multiple iterations mock_llm.executor.execute = AsyncMock( side_effect=[ self.create_tool_use_response( "tool_iter1", {"query": "data1"}, "tool_id1", usage=default_usage, ), self.create_tool_use_response( "tool_iter2", {"query": "data2"}, "tool_id2", usage=default_usage, ), self.create_text_response( "Final response after multiple iterations", usage=default_usage ), ] ) mock_llm.executor.execute_many = AsyncMock( side_effect=[ [ ToolMessage( tool_call_id="tool_id1", content="Result from first tool", ) ], [ ToolMessage( tool_call_id="tool_id2", content="Result from second tool", ) ], ] ) # Set a high max_iterations to allow multiple iterations request_params = RequestParams(max_iterations=5) # Call LLM responses = await mock_llm.generate("Test multiple iterations", request_params) # Assertions assert len(responses) > 4 # Should have multiple responses assert mock_llm.executor.execute.call_count == 3 # Verify the sequence of responses tool_call_responses = [ r for r in responses if hasattr(r, "tool_calls") and r.tool_calls ] tool_result_responses = [r for r in responses if hasattr(r, "tool_call_id")] text_responses = [r for r in responses if hasattr(r, "content") and r.content] assert len(tool_call_responses) == 2 # Two tool call requests assert len(tool_result_responses) == 2 # Two tool results assert len(text_responses) >= 2 # At least interim and final responses # Verify final response assert "Final response" in responses[-1].content # Test 27: System Prompt Handling @pytest.mark.asyncio async def test_system_prompt_handling(self, mock_llm, default_usage): """ Tests handling of system prompts in generate requests. """ # Setup mock executor mock_llm.executor.execute = AsyncMock( return_value=self.create_text_response( "Response with system prompt", usage=default_usage ) ) # Set system prompt in instance test_prompt = "This is a test system prompt" mock_llm.instruction = test_prompt # Call with empty history to ensure system prompt is included mock_llm.history.get = MagicMock(return_value=[]) # Call LLM await mock_llm.generate("Test query") # Assertions req = mock_llm.executor.execute.call_args_list[0][0][1] messages = req.payload["messages"] # First message should be system message with our prompt assert len(messages) >= 2 assert isinstance(messages[0], SystemMessage) assert messages[0].content == test_prompt # Test with system prompt in request params request_prompt = "Override system prompt" request_params = RequestParams(systemPrompt=request_prompt) # Reset mock to clear call history mock_llm.executor.execute.reset_mock() # Call with request params await mock_llm.generate("Test query", request_params) # Assertions req = mock_llm.executor.execute.call_args_list[0][0][1] messages = req.payload["messages"] # Still should use instance instruction over request params assert isinstance(messages[0], SystemMessage) assert messages[0].content == test_prompt # Test 28: Error in Tool Execution @pytest.mark.asyncio async def test_execute_tool_call_exception(self, mock_llm): """ Tests execute_tool_call with an exception during tool call. """ # Create a tool call function_call = FunctionCall( name="failing_tool", arguments=json.dumps({"param": "value"}), ) tool_call = ChatCompletionsToolCall( id="tool_123", type="function", function=function_call, ) # Mock call_tool to raise an exception mock_llm.call_tool = AsyncMock(side_effect=Exception("Tool execution failed")) # Execute tool call result = await mock_llm.execute_tool_call(tool_call) # Assertions assert result is not None assert result.tool_call_id == "tool_123" assert "Error executing tool" in result.content assert "Tool execution failed" in result.content # Test 29: convert_message_to_message_param Method def test_convert_message_to_message_param(self): """ Tests the convert_message_to_message_param method. """ # Create a response message response_message = ChatResponseMessage( role="assistant", content="Test response content", tool_calls=[ ChatCompletionsToolCall( id="tool_123", type="function", function=FunctionCall(name="test_tool", arguments="{}"), ) ], ) # Convert to message param param_message = AzureAugmentedLLM.convert_message_to_message_param( response_message ) # Assertions assert isinstance(param_message, AssistantMessage) assert param_message.content == "Test response content" assert param_message.tool_calls is not None assert len(param_message.tool_calls) == 1 assert param_message.tool_calls[0].function.name == "test_tool"

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Nghiauet/mcp-agent'

If you have feedback or need assistance with the MCP directory API, please join our Discord server