Skip to main content
Glama

MCP Search Server

by Nghiauet
fan_in.py16.4 kB
import contextlib from opentelemetry import trace from typing import Callable, Dict, List, Optional, Type, TYPE_CHECKING from mcp_agent.agents.agent import Agent from mcp_agent.core.context_dependent import ContextDependent from mcp_agent.tracing.telemetry import get_tracer from mcp_agent.workflows.llm.augmented_llm import ( AugmentedLLM, MessageParamT, MessageT, ModelT, RequestParams, ) if TYPE_CHECKING: from mcp_agent.core.context import Context FanInInput = ( # Dict of agent/source name to list of messages generated by that agent Dict[str, List[MessageT] | List[MessageParamT]] # Dict of agent/source name to string generated by that agent | Dict[str, str] # List of lists of messages generated by each agent | List[List[MessageT] | List[MessageParamT]] # List of strings generated by each agent | List[str] ) class FanIn(ContextDependent): """ Aggregate results from multiple parallel tasks into a single result. This is a building block of the Parallel workflow, which can be used to fan out work to multiple agents or other parallel tasks, and then aggregate the results. For example, you can use FanIn to combine the results of multiple agents into a single response, such as a Summarization Fan-In agent that combines the outputs of multiple language models. """ def __init__( self, aggregator_agent: Agent | AugmentedLLM[MessageParamT, MessageT], llm_factory: Callable[[Agent], AugmentedLLM[MessageParamT, MessageT]] = None, context: Optional["Context"] = None, **kwargs, ): """ Initialize the FanIn with an Agent responsible for processing multiple responses into a single aggregated one. """ super().__init__(context=context, **kwargs) self.executor = self.context.executor self.llm_factory = llm_factory self.aggregator_agent = aggregator_agent if not isinstance(self.aggregator_agent, AugmentedLLM): if not self.llm_factory: raise ValueError("llm_factory is required when using an Agent") async def generate( self, messages: FanInInput, request_params: RequestParams | None = None, ) -> List[MessageT]: """ Request fan-in agent generation from a list of messages from multiple sources/agents. Internally aggregates the messages and then calls the aggregator agent to generate a response. """ tracer = get_tracer(self.context) with tracer.start_as_current_span( f"{self.__class__.__name__}.generate" ) as span: if self.context.tracing_enabled and request_params: AugmentedLLM.annotate_span_with_request_params(span, request_params) message: ( str | MessageParamT | List[MessageParamT] ) = await self.aggregate_messages(messages) self._annotate_span_for_generation_message(span, message) async with contextlib.AsyncExitStack() as stack: if isinstance(self.aggregator_agent, AugmentedLLM): llm = self.aggregator_agent else: # Enter agent context ctx_agent = await stack.enter_async_context(self.aggregator_agent) llm = await ctx_agent.attach_llm(self.llm_factory) response = await llm.generate( message=message, request_params=request_params, ) if self.context.tracing_enabled: for i, msg in enumerate(response): response_data = ( llm.extract_response_message_attributes_for_tracing( msg, prefix=f"response.{i}" ) ) span.set_attributes(response_data) return response async def generate_str( self, messages: FanInInput, request_params: RequestParams | None = None, ) -> str: """ Request fan-in agent generation from a list of messages from multiple sources/agents. Internally aggregates the messages and then calls the aggregator agent to generate a response, which is returned as a string. """ tracer = get_tracer(self.context) with tracer.start_as_current_span( f"{self.__class__.__name__}.generate_str" ) as span: if self.context.tracing_enabled and request_params: AugmentedLLM.annotate_span_with_request_params(span, request_params) message: ( str | MessageParamT | List[MessageParamT] ) = await self.aggregate_messages(messages) self._annotate_span_for_generation_message(span, message) async with contextlib.AsyncExitStack() as stack: if isinstance(self.aggregator_agent, AugmentedLLM): llm = self.aggregator_agent else: # Enter agent context ctx_agent = await stack.enter_async_context(self.aggregator_agent) llm = await ctx_agent.attach_llm(self.llm_factory) response = await llm.generate_str( message=message, request_params=request_params ) span.set_attribute("response", response) return response async def generate_structured( self, messages: FanInInput, response_model: Type[ModelT], request_params: RequestParams | None = None, ) -> ModelT: """ Request a structured fan-in agent generation from a list of messages from multiple sources/agents. Internally aggregates the messages and then calls the aggregator agent to generate a response, which is returned as a Pydantic model. """ tracer = get_tracer(self.context) with tracer.start_as_current_span( f"{self.__class__.__name__}.generate_structured" ) as span: span.set_attribute( "response_model", f"{response_model.__module__}.{response_model.__name__}", ) if self.context.tracing_enabled and request_params: AugmentedLLM.annotate_span_with_request_params(span, request_params) message: ( str | MessageParamT | List[MessageParamT] ) = await self.aggregate_messages(messages) self._annotate_span_for_generation_message(span, message) async with contextlib.AsyncExitStack() as stack: if isinstance(self.aggregator_agent, AugmentedLLM): llm = self.aggregator_agent else: # Enter agent context ctx_agent = await stack.enter_async_context(self.aggregator_agent) llm = await ctx_agent.attach_llm(self.llm_factory) structured_response = await llm.generate_structured( message=message, response_model=response_model, request_params=request_params, ) if self.context.tracing_enabled: try: span.set_attribute( "structured_response_json", structured_response.model_dump_json(), ) # pylint: disable=broad-exception-caught except Exception: pass # no-op for best-effort tracing return structured_response async def aggregate_messages( self, messages: FanInInput ) -> str | MessageParamT | List[MessageParamT]: """ Aggregate messages from multiple sources/agents into a single message to use with the aggregator agent generation. The input can be a dictionary of agent/source name to list of messages generated by that agent, or just the unattributed lists of messages to aggregate. Args: messages: Can be one of: - Dict[str, List[MessageT] | List[MessageParamT]]: Dict of agent names to messages - Dict[str, str]: Dict of agent names to message strings - List[List[MessageT] | List[MessageParamT]]: List of message lists from agents - List[str]: List of message strings from agents Returns: Aggregated message as string, MessageParamT or List[MessageParamT] Raises: ValueError: If input is empty or contains empty/invalid elements """ # Handle dictionary inputs if isinstance(messages, dict): # Check for empty dict if not messages: raise ValueError("Input dictionary cannot be empty") first_value = next(iter(messages.values())) # Dict[str, List[MessageT] | List[MessageParamT]] if isinstance(first_value, list): if any(not isinstance(v, list) for v in messages.values()): raise ValueError("All dictionary values must be lists of messages") # Process list of messages for each agent return await self.aggregate_agent_messages(messages) # Dict[str, str] elif isinstance(first_value, str): if any(not isinstance(v, str) for v in messages.values()): raise ValueError("All dictionary values must be strings") # Process string outputs from each agent return await self.aggregate_agent_message_strings(messages) else: raise ValueError( "Dictionary values must be either lists of messages or strings" ) # Handle list inputs elif isinstance(messages, list): # Check for empty list if not messages: raise ValueError("Input list cannot be empty") first_item = messages[0] # List[List[MessageT] | List[MessageParamT]] if isinstance(first_item, list): if any(not isinstance(item, list) for item in messages): raise ValueError("All list items must be lists of messages") # Process list of message lists return await self.aggregate_message_lists(messages) # List[str] elif isinstance(first_item, str): if any(not isinstance(item, str) for item in messages): raise ValueError("All list items must be strings") # Process list of strings return await self.aggregate_message_strings(messages) else: raise ValueError( "List items must be either lists of messages or strings" ) else: raise ValueError( "Input must be either a dictionary of agent messages or a list of messages" ) # Helper methods for processing different types of inputs async def aggregate_agent_messages( self, messages: Dict[str, List[MessageT] | List[MessageParamT]] ) -> str | MessageParamT | List[MessageParamT]: """ Aggregate message lists with agent names. Args: messages: Dictionary mapping agent names to their message lists Returns: str | List[MessageParamT]: Messages formatted with agent attribution """ # In the default implementation, we'll just convert the messages to a # single string with agent attribution aggregated_messages = [] if not messages: return "" # Format each agent's messages with attribution for agent_name, agent_messages in messages.items(): agent_message_strings = [] for msg in agent_messages or []: if isinstance(msg, str): agent_message_strings.append(f"Agent {agent_name}: {msg}") else: # Assume it's a Message/MessageParamT and add attribution agent_message_strings.append(f"Agent {agent_name}: {str(msg)}") aggregated_messages.append("\n".join(agent_message_strings)) # Combine all messages with clear separation final_message = "\n\n".join(aggregated_messages) final_message = f"Aggregated responses from multiple Agents:\n\n{final_message}" return final_message async def aggregate_agent_message_strings(self, messages: Dict[str, str]) -> str: """ Aggregate string outputs with agent names. Args: messages: Dictionary mapping agent names to their string outputs Returns: str: Combined string with agent attributions """ if not messages: return "" # Format each agent's message with agent attribution aggregated_messages = [ f"Agent {agent_name}: {message}" for agent_name, message in messages.items() ] # Combine all messages with clear separation final_message = "\n\n".join(aggregated_messages) final_message = f"Aggregated responses from multiple Agents:\n\n{final_message}" return final_message async def aggregate_message_lists( self, messages: List[List[MessageT] | List[MessageParamT]] ) -> str | MessageParamT | List[MessageParamT]: """ Aggregate message lists without agent names. Args: messages: List of message lists from different agents Returns: List[MessageParamT]: List of formatted messages """ aggregated_messages = [] if not messages: return "" # Format each source's messages for i, source_messages in enumerate(messages, 1): source_message_strings = [] for msg in source_messages or []: if isinstance(msg, str): source_message_strings.append(f"Source {i}: {msg}") else: # Assume it's a MessageParamT or MessageT and add source attribution source_message_strings.append(f"Source {i}: {str(msg)}") aggregated_messages.append("\n".join(source_messages)) # Combine all messages with clear separation final_message = "\n\n".join(aggregated_messages) final_message = ( f"Aggregated responses from multiple sources:\n\n{final_message}" ) return final_message async def aggregate_message_strings(self, messages: List[str]) -> str: """ Aggregate string outputs without agent names. Args: messages: List of string outputs from different agents Returns: str: Combined string with source attributions """ if not messages: return "" # Format each source's message with attribution aggregated_messages = [ f"Source {i}: {message}" for i, message in enumerate(messages, 1) ] # Combine all messages with clear separation final_message = "\n\n".join(aggregated_messages) final_message = ( f"Aggregated responses from multiple sources:\n\n{final_message}" ) return final_message def _annotate_span_for_generation_message( self, span: trace.Span, message: MessageParamT | str | List[MessageParamT], ) -> None: """Annotate the span with the message content.""" if not self.context.tracing_enabled: return if isinstance(message, str): span.set_attribute("message.content", message) elif isinstance(message, list): for i, msg in enumerate(message): if isinstance(msg, str): span.set_attribute(f"message.{i}.content", msg) else: span.set_attribute(f"message.{i}", str(msg)) else: span.set_attribute("message", str(message))

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Nghiauet/mcp-agent'

If you have feedback or need assistance with the MCP directory API, please join our Discord server