Skip to main content
Glama

MCP Search Server

by Nghiauet
executor.py13 kB
import asyncio import functools import random import uuid from abc import ABC, abstractmethod from contextlib import asynccontextmanager from datetime import timedelta from typing import ( Any, AsyncIterator, Callable, Coroutine, Dict, List, Optional, Type, TypeVar, TYPE_CHECKING, ) from pydantic import BaseModel, ConfigDict from mcp_agent.core.context_dependent import ContextDependent from mcp_agent.executor.workflow_signal import ( AsyncioSignalHandler, Signal, SignalHandler, SignalValueT, ) from mcp_agent.logging.logger import get_logger from mcp_agent.tracing.telemetry import telemetry if TYPE_CHECKING: from mcp_agent.core.context import Context logger = get_logger(__name__) # Type variable for the return type of tasks R = TypeVar("R") class ExecutorConfig(BaseModel): """Configuration for executors.""" max_concurrent_activities: int | None = None # Unbounded by default timeout_seconds: timedelta | None = None # No timeout by default retry_policy: Dict[str, Any] | None = None model_config = ConfigDict(extra="allow", arbitrary_types_allowed=True) class Executor(ABC, ContextDependent): """Abstract base class for different execution backends""" def __init__( self, engine: str, config: ExecutorConfig | None = None, signal_bus: SignalHandler = None, context: Optional["Context"] = None, **kwargs, ): super().__init__(context=context, **kwargs) self.execution_engine = engine if config: self.config = config else: # TODO: saqadri - executor config should be loaded from settings # ctx = get_current_context() self.config = ExecutorConfig() self.signal_bus = signal_bus @asynccontextmanager async def execution_context(self): """Context manager for execution setup/teardown.""" try: yield except Exception as e: # TODO: saqadri - add logging or other error handling here raise e @abstractmethod async def execute( self, task: Callable[..., R] | Coroutine[Any, Any, R], *args, **kwargs, ) -> R | BaseException: """Execute a list of tasks and return their results""" @abstractmethod async def execute_many( self, tasks: List[Callable[..., R] | Coroutine[Any, Any, R]], *args, **kwargs, ) -> List[R | BaseException]: """Execute a list of tasks and return their results""" @abstractmethod async def execute_streaming( self, tasks: List[Callable[..., R] | Coroutine[Any, Any, R]], *args, **kwargs: Any, ) -> AsyncIterator[R | BaseException]: """Execute tasks and yield results as they complete""" async def map( self, func: Callable[..., R], inputs: List[Any], **kwargs: Any, ) -> List[R | BaseException]: """ Run `func(item)` for each item in `inputs` with concurrency limit. """ results: List[R, BaseException] = [] async def run(item): if self.config.max_concurrent_activities: semaphore = asyncio.Semaphore(self.config.max_concurrent_activities) async with semaphore: return await self.execute(functools.partial(func, item), **kwargs) else: return await self.execute(functools.partial(func, item), **kwargs) coros = [run(x) for x in inputs] # gather all, each returns a single-element list list_of_lists = await asyncio.gather(*coros, return_exceptions=True) # Flatten results for entry in list_of_lists: if isinstance(entry, list): results.extend(entry) else: # Means we got an exception at the gather level results.append(entry) return results async def validate_task( self, task: Callable[..., R] | Coroutine[Any, Any, R] ) -> None: """Validate a task before execution.""" if not (asyncio.iscoroutine(task) or asyncio.iscoroutinefunction(task)): raise TypeError(f"Task must be async: {task}") async def signal( self, signal_name: str, payload: SignalValueT = None, signal_description: str | None = None, workflow_id: str | None = None, run_id: str | None = None, ) -> None: """ Emit a signal. Args: signal_name: The name of the signal to emit payload: Optional data to include with the signal signal_description: Optional human-readable description workflow_id: Optional workflow ID to send the signal run_id: Optional run ID of the workflow instance to signal """ signal = Signal[SignalValueT]( name=signal_name, payload=payload, description=signal_description, workflow_id=workflow_id, run_id=run_id, ) await self.signal_bus.signal(signal) async def wait_for_signal( self, signal_name: str, request_id: str | None = None, workflow_id: str | None = None, run_id: str | None = None, signal_description: str | None = None, timeout_seconds: int | None = None, signal_type: Type[SignalValueT] = str, ) -> SignalValueT: """ Wait until a signal with signal_name is emitted (or timeout). Return the signal's payload when triggered, or raise on timeout. """ # Notify any callbacks that the workflow is about to be paused waiting for a signal if self.context.signal_notification: self.context.signal_notification( signal_name=signal_name, request_id=request_id, workflow_id=workflow_id, run_id=run_id, metadata={ "description": signal_description, "timeout_seconds": timeout_seconds, "signal_type": signal_type, }, ) signal = Signal[signal_type]( name=signal_name, description=signal_description, workflow_id=workflow_id, run_id=run_id, ) return await self.signal_bus.wait_for_signal(signal) def uuid(self) -> uuid.UUID: """ Generate a UUID. Some executors enforce deterministic UUIDs, so this is an opportunity for an executor to provide its own UUID generation. Defaults to uuid4(). """ return uuid.uuid4() def random(self) -> random.Random: """ Get a random number generator. Some executors enforce deterministic random number generation, so this is an opportunity for an executor to provide its own random number generator. Defaults to random.Random(). """ return random.Random() class AsyncioExecutor(Executor): """Default executor using asyncio""" def __init__( self, config: ExecutorConfig | None = None, signal_bus: SignalHandler | None = None, ): signal_bus = signal_bus or AsyncioSignalHandler() super().__init__(engine="asyncio", config=config, signal_bus=signal_bus) self._activity_semaphore: asyncio.Semaphore | None = None if self.config.max_concurrent_activities is not None: self._activity_semaphore = asyncio.Semaphore( self.config.max_concurrent_activities ) async def _execute_task( self, task: Callable[..., R] | Coroutine[Any, Any, R], *args, **kwargs ) -> R | BaseException: async def run_task(task: Callable[..., R] | Coroutine[Any, Any, R]) -> R: try: if asyncio.iscoroutine(task): return await task elif asyncio.iscoroutinefunction(task): return await task(*args, **kwargs) else: # Execute the callable and await if it returns a coroutine loop = asyncio.get_running_loop() # Using partial to handle both args and kwargs together wrapped_task = functools.partial(task, *args, **kwargs) result = await loop.run_in_executor(None, wrapped_task) # Handle case where the sync function returns a coroutine if asyncio.iscoroutine(result): return await result return result except Exception as e: logger.error(f"Error executing task: {e}") return e if self._activity_semaphore: async with self._activity_semaphore: return await run_task(task) else: return await run_task(task) @telemetry.traced() async def execute( self, task: Callable[..., R] | Coroutine[Any, Any, R], *args, **kwargs, ) -> R | BaseException: """ Execute a task and return its results. Args: task: The task to execute *args: Positional arguments to pass to the task **kwargs: Additional arguments to pass to the tasks Returns: A result or exception """ # TODO: saqadri - validate if async with self.execution_context() is needed here async with self.execution_context(): return await self._execute_task( task, *args, **kwargs, ) @telemetry.traced() async def execute_many( self, tasks: List[Callable[..., R] | Coroutine[Any, Any, R]], *args, **kwargs, ) -> List[R | BaseException]: """ Execute a list of tasks and return their results. Args: tasks: The tasks to execute *args: Positional arguments to pass to each task **kwargs: Additional arguments to pass to the tasks Returns: A list of results or exceptions """ # TODO: saqadri - validate if async with self.execution_context() is needed here async with self.execution_context(): return await asyncio.gather( *( self._execute_task( task, **kwargs, ) for task in tasks ), return_exceptions=True, ) @telemetry.traced() async def execute_streaming( self, tasks: List[Callable[..., R] | Coroutine[Any, Any, R]], *args, **kwargs: Any, ) -> AsyncIterator[R | BaseException]: """ Execute tasks and yield results as they complete. Args: tasks: The tasks to execute *args: Positional arguments to pass to each task **kwargs: Additional arguments to pass to the tasks Yields: Results or exceptions as tasks complete """ # TODO: saqadri - validate if async with self.execution_context() is needed here async with self.execution_context(): # Create futures for all tasks futures = [ asyncio.create_task( self._execute_task( task, *args, **kwargs, ) ) for task in tasks ] pending = set(futures) while pending: done, pending = await asyncio.wait( pending, return_when=asyncio.FIRST_COMPLETED ) for future in done: yield await future @telemetry.traced() async def signal( self, signal_name: str, payload: SignalValueT = None, signal_description: str | None = None, workflow_id: str | None = None, run_id: str | None = None, ) -> None: await super().signal( signal_name, payload, signal_description, workflow_id, run_id ) @telemetry.traced() async def wait_for_signal( self, signal_name: str, request_id: str | None = None, workflow_id: str | None = None, run_id: str | None = None, signal_description: str | None = None, timeout_seconds: int | None = None, signal_type: Type[SignalValueT] = str, ) -> SignalValueT: return await super().wait_for_signal( signal_name, request_id, workflow_id, run_id, signal_description, timeout_seconds, signal_type, )

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Nghiauet/mcp-agent'

If you have feedback or need assistance with the MCP directory API, please join our Discord server