Skip to main content
Glama

MCP Search Server

by Nghiauet
README.md2.81 kB
# Workflow Router example This example shows an LLM-based routing to the `top_k` most relevant categories, which can be an Agent, an MCP server, or a function. The example routes between the functions: `print_to_console`, `print_hello_world`; the agents: `finder_agent`, `writer_agent`, `reasoning_agent`. ![Router workflow (Image credit: Anthropic)](https://www.anthropic.com/_next/image?url=https%3A%2F%2Fwww-cdn.anthropic.com%2Fimages%2F4zrzovbb%2Fwebsite%2F5c0c0e9fe4def0b584c04d37849941da55e5e71c-2401x1000.png&w=3840&q=75) --- ```plaintext ┌───────────┐ ┌──▶│ Finder ├───▶ │ │ Agent │ │ └───────────┘ │ ┌───────────┐ ├──▶│ Reasoning ├───▶ │ │ Agent │ │ └───────────┘ ┌───────────┐ │ ┌───────────┐ │ LLMRouter ├─┼──▶│ Writer ├───▶ └───────────┘ │ │ Agent │ │ └───────────┘ │ ┌───────────────────┐ ├──▶│ print_to_console ├───▶ │ │ Function │ │ └───────────────────┘ │ ┌───────────────────┐ └──▶│ print_hello_world ├───▶ │ Function │ └───────────────────┘ ``` ## `1` App set up First, clone the repo and navigate to the workflow router example: ```bash git clone https://github.com/lastmile-ai/mcp-agent.git cd mcp-agent/examples/workflows/workflow_router ``` Install `uv` (if you don’t have it): ```bash pip install uv ``` Sync `mcp-agent` project dependencies: ```bash uv sync ``` Install requirements specific to this example: ```bash uv pip install -r requirements.txt ``` ## `2` Set up environment variables Copy and configure your secrets and env variables: ```bash cp mcp_agent.secrets.yaml.example mcp_agent.secrets.yaml ``` Then open `mcp_agent.secrets.yaml` and add your api key for your preferred LLM. ## (Optional) Configure tracing In `mcp_agent.config.yaml`, you can set `otel` to `enabled` to enable OpenTelemetry tracing for the workflow. You can [run Jaeger locally](https://www.jaegertracing.io/docs/2.5/getting-started/) to view the traces in the Jaeger UI. ## `3` Run locally Run your MCP Agent app: ```bash uv run main.py ```

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Nghiauet/mcp-agent'

If you have feedback or need assistance with the MCP directory API, please join our Discord server