# MCP Agent Intent Classification Workflow example
This example shows using intent classification workflow, which is a close sibling of the [router workflow](../workflow_router/). The example uses both the OpenAI embedding intent classifier and the OpenAI LLM intent classifier.
## `1` App set up
First, clone the repo and navigate to the workflow intent classifier example:
```bash
git clone https://github.com/lastmile-ai/mcp-agent.git
cd mcp-agent/examples/workflows/workflow_intent_classifier
```
Install `uv` (if you don’t have it):
```bash
pip install uv
```
Sync `mcp-agent` project dependencies:
```bash
uv sync
```
Install requirements specific to this example:
```bash
uv pip install -r requirements.txt
```
## `2` Set up environment variables
Copy and configure your secrets and env variables:
```bash
cp mcp_agent.secrets.yaml.example mcp_agent.secrets.yaml
```
Then open `mcp_agent.secrets.yaml` and add your OpenAI api key.
## (Optional) Configure tracing
In `mcp_agent.config.yaml`, you can set `otel` to `enabled` to enable OpenTelemetry tracing for the workflow.
You can [run Jaeger locally](https://www.jaegertracing.io/docs/2.5/getting-started/) to view the traces in the Jaeger UI.
## `3` Run locally
Run your MCP Agent app:
```bash
uv run main.py
```
MCP directory API
We provide all the information about MCP servers via our MCP API.
curl -X GET 'https://glama.ai/api/mcp/v1/servers/Nghiauet/mcp-agent'
If you have feedback or need assistance with the MCP directory API, please join our Discord server