# Streamlit MCP RAG Agent example
This Streamlit example shows a RAG Agent that is able to augment its responses using data from Qdrant vector database.
<img width="834" alt="Image" src="https://github.com/user-attachments/assets/14072029-1f37-4ac5-bccf-a76e726ba9b2" />
---
```plaintext
┌───────────┐ ┌─────────┐ ┌──────────────┐
│ Streamlit │─────▶│ Agent │─────▶│ Qdrant │
│ App │ │ │ │ MCP Server │
└───────────┘ └─────────┘ └──────────────┘
```
## `1` App set up
First, clone the repo and navigate to the streamlit mcp rag agent example:
```bash
git clone https://github.com/lastmile-ai/mcp-agent.git
cd mcp-agent/examples/usecase/streamlit_mcp_rag_agent
```
Install `uv` (if you don’t have it):
```bash
pip install uv
```
Sync `mcp-agent` project dependencies:
```bash
uv sync
```
Install requirements specific to this example:
```bash
uv pip install -r requirements.txt
```
## `1.1` Install Qdrant
Download latest Qdrant image from Dockerhub:
```bash
docker pull qdrant/qdrant
```
Then, run the Qdrant server locally with docker:
```bash
docker run -p 6333:6333 -v $(pwd)/qdrant_storage:/qdrant/storage qdrant/qdrant
```
## `2` Set up secrets and environment variables
Copy and configure your secrets and env variables:
```bash
cp mcp_agent.secrets.yaml.example mcp_agent.secrets.yaml
```
Then open `mcp_agent.secrets.yaml` and add your api key for your preferred LLM.
## `3` Run locally
Run your MCP Agent app:
```bash
uv run streamlit run main.py
```
MCP directory API
We provide all the information about MCP servers via our MCP API.
curl -X GET 'https://glama.ai/api/mcp/v1/servers/Nghiauet/mcp-agent'
If you have feedback or need assistance with the MCP directory API, please join our Discord server